LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison | Mathematical Programming Computation Skip to main content
Log in

LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

While semidefinite relaxations are known to deliver good approximations for combinatorial optimization problems like graph bisection, their practical scope is mostly associated with small dense instances. For large sparse instances, cutting plane techniques are considered the method of choice. These are also applicable for semidefinite relaxations via the spectral bundle method, which allows to exploit structural properties like sparsity. In order to evaluate the relative strengths of linear and semidefinite approaches for large sparse instances, we set up a common branch-and-cut framework for linear and semidefinite relaxations of the minimum graph bisection problem. It incorporates separation algorithms for valid inequalities of the bisection cut polytope described in a recent study by the authors. While the problem specific cuts help to strengthen the linear relaxation significantly, the semidefinite bound profits much more from separating the cycle inequalities of the cut polytope on a slightly enlarged support. Extensive numerical experiments show that this semidefinite branch-and-cut approach without problem specific cuts is a superior choice to the classical simplex approach exploiting bisection specific inequalities on a clear majority of our large sparse test instances from VLSI design and numerical optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achterberg, T.: Constraint Integer Programming. PhD-thesis, Technische Universität Berlin, Verlag Dr. Hut, München (2008)

  2. Achterberg, T.: SCIP 1.1.0. Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, 14195 Berlin-Dahlem, Germany. http://scip.zib.de (2009)

  3. Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Armbruster, M.: Branch-and-Cut for a Semidefinite Relaxation of Large-scale Minimum Bisection Problems. PhD-thesis, Technische Universität Chemnitz, Chemnitz, Germany (2007)

  5. Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: A comparative study of linear and semidefinite branch-and-cut methods for solving the minimum graph bisection problem. In: Lodi, A., Panconesi, A., Rinaldi, G., (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 5035, pp. 112–124. IPCO 2008. Springer, Berlin (2008)

  6. Armbruster M., Fügenschuh M., Helmberg C., Martin A.: On the graph bisection cut polytope. SIAM J. Discrete Math. 22(3), 1073–1098 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barahona F., Mahjoub A.R.: On the cut polytope. Math. Progr. 36, 157–173 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Belloni A., Sagastizábal C.: Dynamic bundle methods. Math. Progr. 120, 289–311 (2009)

    Article  MATH  Google Scholar 

  9. Conforti M., Rao M., Sassano A.: The equipartition polytope I. Math. Progr. 49, 49–70 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conforti M., Rao M., Sassano A.: The equipartition polytope II. Math. Progr. 49, 71–90 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Souza, C.C.: The graph equipartition problem: optimal solutions, extensions and applications. PhD-thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (1993)

  12. Deza M., Laurent M.: Geometry of Cuts and Metrics. Algorithms and Combinatorics, vol. 15. Springer, Berlin (1997)

    Google Scholar 

  13. Dolan E., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Progr. 91(2), 201–213 (2002)

    Article  MATH  Google Scholar 

  14. Engau A., Anjos M.F., Vannelli A.: On interior-point warmstarts for linear and combinatorial optimization. SIAM J. Optim. 20(4), 1828–1861 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Engau, A., Anjos, M.F., Vannelli, A.: On handling cutting planes in interior-point methods for solving semidefinite relaxations of binary quadratic optimization problems. Technical Report, École Polytechnique de Montréal, Canada. Optimization Methods and Software (to appear) (2010)

  16. Eisenblätter, A.: Frequency assignment in GSM networks. PhD-thesis, Technische Universität Berlin, Berlin. ISBN 3-89873-213-4. ftp://ftp.zib.de/pub/zib-publications/books/PhD_eisenblaetter.ps.Z (2001)

  17. Ferreira C.E., Martin A., de Souza C.C., Weismantel R., Wolsey L.A.: Formulations and valid inequalities for the node capacitated graph partitioning problem. Math. Progr. 74, 247–267 (1996)

    MATH  Google Scholar 

  18. Ferreira C.E., Martin A., de Souza C.C., Weismantel R., Wolsey L.A.: The node capacitated graph partitioning problem: a computational study. Math. Progr. 81(2), 229–256 (1998)

    Article  MATH  Google Scholar 

  19. Frieze A., Jerrum M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18(1), 67–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fügenschuh, M.: Relaxations and Solutions for the Minimum Graph Bisection Problem. Phd thesis, Darmstadt University of Technology, Darmstadt, Germany (2007)

  21. Garey M.R., Johnson D.S.: Computers and Intractability. W. H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  22. Gilbert J.R., Tarjan R.E.: The analysis of a nested dissection algorithm. Numer. Math. 50, 377–404 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Goemans M.X., Williamson D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Helmberg C.: Fixing variables in semidefinite relaxations. SIAM J. Matrix Anal. Appl. 21(3), 952–969 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Helmberg, C.: Semidefinite programming for combinatorial optimization. Habilitationsschrift TU Berlin, Jan. 2000; ZIB-Report ZR 00-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, 14195 Berlin, Germany (2000)

  26. Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. In: Grötschel, M. (ed.) The Sharpest Cut, MPS-SIAM Series on Optimization, pp. 233–256. SIAM/MPS (2004)

  27. Helmberg, C.: ConicBundle 0.3. Fakultät für Mathematik, Technische Universität Chemnitz. http://www.tuchemnitz.de/~helmberg/ConicBundle (2009)

  28. Helmberg C., Kiwiel K.C.: A spectral bundle method with bounds. Math. Progr. 93(2), 173–194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Helmberg C., Rendl F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Progr. 82(3), 291–315 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Helmberg C., Rendl F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3), 673–696 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. ILOG, S.A.: 9 Rue de Verdun, 94253 Gentilly Cedex, France. ILOG AMPL CPLEX System, Version 12.1, User’s Guide (2008)

  32. Johnson E., Mehrotra A., Nemhauser G.: Min-cut clustering. Math. Progr. 62, 133–152 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jünger M., Martin A., Reinelt G., Weismantel R.: Quadratic 0/1 optimization and a decomposition approach for the placement of electronic circuits. Math. Progr. 63(3), 257–279 (1994)

    Article  MATH  Google Scholar 

  34. Karypis, G., Kumar, V.: MeTiS: a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0. Technical report, Department of Computer Science, University of Minnesota. http://glaros.dtc.umn.edu/gkhome/views/metis (1998)

  35. Laurent M., de Souza C.C.: Some new classes of facets for the equicut polytope. Discrete Appl. Math. 62, 167–191 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lengauer T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)

    MATH  Google Scholar 

  37. Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT-25(1), 1–7 (1979)

    Article  Google Scholar 

  38. Mitchell J.E.: Computational experience with an interior point cutting plane algorithm. SIAM J. Optim. 10(4), 1212–1227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Poljak S., Rendl F.: Nonpolyhedral relaxations of graph-bisection problems. SIAM J. Optim. 5(3), 467–487 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rendl F., Rinaldi G., Wiegele A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Progr. 121(2), 307–335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Weismantel R.: On the 0/1 knapsack polytope. Math. Progr. 77, 49–68 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Fügenschuh.

Additional information

A conference version of this article appeared as [5].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armbruster, M., Fügenschuh, M., Helmberg, C. et al. LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison. Math. Prog. Comp. 4, 275–306 (2012). https://doi.org/10.1007/s12532-012-0040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-012-0040-5

Keywords

Mathematics Subject Classification

Navigation