Abstract
While semidefinite relaxations are known to deliver good approximations for combinatorial optimization problems like graph bisection, their practical scope is mostly associated with small dense instances. For large sparse instances, cutting plane techniques are considered the method of choice. These are also applicable for semidefinite relaxations via the spectral bundle method, which allows to exploit structural properties like sparsity. In order to evaluate the relative strengths of linear and semidefinite approaches for large sparse instances, we set up a common branch-and-cut framework for linear and semidefinite relaxations of the minimum graph bisection problem. It incorporates separation algorithms for valid inequalities of the bisection cut polytope described in a recent study by the authors. While the problem specific cuts help to strengthen the linear relaxation significantly, the semidefinite bound profits much more from separating the cycle inequalities of the cut polytope on a slightly enlarged support. Extensive numerical experiments show that this semidefinite branch-and-cut approach without problem specific cuts is a superior choice to the classical simplex approach exploiting bisection specific inequalities on a clear majority of our large sparse test instances from VLSI design and numerical optimization.
Similar content being viewed by others
References
Achterberg, T.: Constraint Integer Programming. PhD-thesis, Technische Universität Berlin, Verlag Dr. Hut, München (2008)
Achterberg, T.: SCIP 1.1.0. Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, 14195 Berlin-Dahlem, Germany. http://scip.zib.de (2009)
Achterberg T., Koch T., Martin A.: Branching rules revisited. Oper. Res. Lett. 33, 42–54 (2005)
Armbruster, M.: Branch-and-Cut for a Semidefinite Relaxation of Large-scale Minimum Bisection Problems. PhD-thesis, Technische Universität Chemnitz, Chemnitz, Germany (2007)
Armbruster, M., Fügenschuh, M., Helmberg, C., Martin, A.: A comparative study of linear and semidefinite branch-and-cut methods for solving the minimum graph bisection problem. In: Lodi, A., Panconesi, A., Rinaldi, G., (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 5035, pp. 112–124. IPCO 2008. Springer, Berlin (2008)
Armbruster M., Fügenschuh M., Helmberg C., Martin A.: On the graph bisection cut polytope. SIAM J. Discrete Math. 22(3), 1073–1098 (2008)
Barahona F., Mahjoub A.R.: On the cut polytope. Math. Progr. 36, 157–173 (1986)
Belloni A., Sagastizábal C.: Dynamic bundle methods. Math. Progr. 120, 289–311 (2009)
Conforti M., Rao M., Sassano A.: The equipartition polytope I. Math. Progr. 49, 49–70 (1990)
Conforti M., Rao M., Sassano A.: The equipartition polytope II. Math. Progr. 49, 71–90 (1990)
de Souza, C.C.: The graph equipartition problem: optimal solutions, extensions and applications. PhD-thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (1993)
Deza M., Laurent M.: Geometry of Cuts and Metrics. Algorithms and Combinatorics, vol. 15. Springer, Berlin (1997)
Dolan E., Moré J.J.: Benchmarking optimization software with performance profiles. Math. Progr. 91(2), 201–213 (2002)
Engau A., Anjos M.F., Vannelli A.: On interior-point warmstarts for linear and combinatorial optimization. SIAM J. Optim. 20(4), 1828–1861 (2010)
Engau, A., Anjos, M.F., Vannelli, A.: On handling cutting planes in interior-point methods for solving semidefinite relaxations of binary quadratic optimization problems. Technical Report, École Polytechnique de Montréal, Canada. Optimization Methods and Software (to appear) (2010)
Eisenblätter, A.: Frequency assignment in GSM networks. PhD-thesis, Technische Universität Berlin, Berlin. ISBN 3-89873-213-4. ftp://ftp.zib.de/pub/zib-publications/books/PhD_eisenblaetter.ps.Z (2001)
Ferreira C.E., Martin A., de Souza C.C., Weismantel R., Wolsey L.A.: Formulations and valid inequalities for the node capacitated graph partitioning problem. Math. Progr. 74, 247–267 (1996)
Ferreira C.E., Martin A., de Souza C.C., Weismantel R., Wolsey L.A.: The node capacitated graph partitioning problem: a computational study. Math. Progr. 81(2), 229–256 (1998)
Frieze A., Jerrum M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18(1), 67–81 (1997)
Fügenschuh, M.: Relaxations and Solutions for the Minimum Graph Bisection Problem. Phd thesis, Darmstadt University of Technology, Darmstadt, Germany (2007)
Garey M.R., Johnson D.S.: Computers and Intractability. W. H. Freeman and Company, New York (1979)
Gilbert J.R., Tarjan R.E.: The analysis of a nested dissection algorithm. Numer. Math. 50, 377–404 (1987)
Goemans M.X., Williamson D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
Helmberg C.: Fixing variables in semidefinite relaxations. SIAM J. Matrix Anal. Appl. 21(3), 952–969 (2000)
Helmberg, C.: Semidefinite programming for combinatorial optimization. Habilitationsschrift TU Berlin, Jan. 2000; ZIB-Report ZR 00-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, 14195 Berlin, Germany (2000)
Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. In: Grötschel, M. (ed.) The Sharpest Cut, MPS-SIAM Series on Optimization, pp. 233–256. SIAM/MPS (2004)
Helmberg, C.: ConicBundle 0.3. Fakultät für Mathematik, Technische Universität Chemnitz. http://www.tuchemnitz.de/~helmberg/ConicBundle (2009)
Helmberg C., Kiwiel K.C.: A spectral bundle method with bounds. Math. Progr. 93(2), 173–194 (2002)
Helmberg C., Rendl F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Progr. 82(3), 291–315 (1998)
Helmberg C., Rendl F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3), 673–696 (2000)
ILOG, S.A.: 9 Rue de Verdun, 94253 Gentilly Cedex, France. ILOG AMPL CPLEX System, Version 12.1, User’s Guide (2008)
Johnson E., Mehrotra A., Nemhauser G.: Min-cut clustering. Math. Progr. 62, 133–152 (1993)
Jünger M., Martin A., Reinelt G., Weismantel R.: Quadratic 0/1 optimization and a decomposition approach for the placement of electronic circuits. Math. Progr. 63(3), 257–279 (1994)
Karypis, G., Kumar, V.: MeTiS: a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, version 4.0. Technical report, Department of Computer Science, University of Minnesota. http://glaros.dtc.umn.edu/gkhome/views/metis (1998)
Laurent M., de Souza C.C.: Some new classes of facets for the equicut polytope. Discrete Appl. Math. 62, 167–191 (1995)
Lengauer T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)
Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory IT-25(1), 1–7 (1979)
Mitchell J.E.: Computational experience with an interior point cutting plane algorithm. SIAM J. Optim. 10(4), 1212–1227 (2000)
Poljak S., Rendl F.: Nonpolyhedral relaxations of graph-bisection problems. SIAM J. Optim. 5(3), 467–487 (1995)
Rendl F., Rinaldi G., Wiegele A.: Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Progr. 121(2), 307–335 (2010)
Weismantel R.: On the 0/1 knapsack polytope. Math. Progr. 77, 49–68 (1997)
Author information
Authors and Affiliations
Corresponding author
Additional information
A conference version of this article appeared as [5].
Rights and permissions
About this article
Cite this article
Armbruster, M., Fügenschuh, M., Helmberg, C. et al. LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison. Math. Prog. Comp. 4, 275–306 (2012). https://doi.org/10.1007/s12532-012-0040-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-012-0040-5
Keywords
- Branch and cut algorithms
- Cutting plane algorithms
- Polyhedral combinatorics
- Semidefinite programs
- Graph bisection