A primal–dual regularized interior-point method for convex quadratic programs | Mathematical Programming Computation Skip to main content
Log in

A primal–dual regularized interior-point method for convex quadratic programs

  • Full Length Paper
  • Published:
Mathematical Programming Computation Aims and scope Submit manuscript

Abstract

Interior-point methods in augmented form for linear and convex quadratic programming require the solution of a sequence of symmetric indefinite linear systems which are used to derive search directions. Safeguards are typically required in order to handle free variables or rank-deficient Jacobians. We propose a consistent framework and accompanying theoretical justification for regularizing these linear systems. Our approach can be interpreted as a simultaneous proximal-point regularization of the primal and dual problems. The regularization is termedexact to emphasize that, although the problems are regularized, the algorithm recovers a solution of the original problem, for appropriate values of the regularization parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman A., Gondzio J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11(12), 275–302 (1999)

    Article  MathSciNet  Google Scholar 

  2. Altman, A., Gondzio, J. Higher order primal dual method (2009). http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html

  3. Anjos M.F., Burer S.: On handling free variables in interior-point methods for conic linear optimization. SIAM J. Optim. 18(4), 1310–1325 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Armand, P., Benoist, J.: Uniform boundedness of the inverse of a jacobian matrix arising in regularized interior-point methods. Math. Program. (2011). doi:10.1007/s10107-011-0498-3

  5. Bellavia S., Gondzio J., Morini B.: Regularization and preconditioning of KKT systems arising in nonnegative least-squares problems. Numer. Linear Algebra Appl. 16(1), 39–61 (2009). doi:10.1002/nla.610

    Article  MathSciNet  MATH  Google Scholar 

  6. Bunch J.R., Parlett B.N.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8(4), 639–655 (1971)

    Article  MathSciNet  Google Scholar 

  7. Castro, J., Cuesta, J.: Quadratic regularizations in an interior-point method for primal block-angular problems. Math. Programm., 1–31 (2010). doi:10.1007/s10107-010-0341-2

  8. Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.. PCx user guide version 1.1. Technical Report OTC 96/01, Optimization Technology Center, Evanston (1996). http://www.mcs.anl.gov/OTC/Tools/PCx

  9. Fletcher R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)

    MATH  Google Scholar 

  10. Friedlander M.P., Leyffer S.: Global and finite termination of a two-phase augmented Lagrangian filter method for general quadratic programs. SIAM J. Sci. Comput. 30(4), 1706–1729 (2008). doi:10.1137/060669930

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedlander M.P., Tseng P.: Exact regularization of convex programs. SIAM J. Optim. 18(4), 1326–1350 (2007). doi:10.1137/060675320

    Article  MathSciNet  MATH  Google Scholar 

  12. Gertz E.M., Wright S.J.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29(1), 58–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gill, P.E., Murray, W., Ponceleón, D.B., Saunders, M.A.: Solving reduced KKT systems in barrier methods for linear and quadratic programming. Technical Report SOL 91-7, Systems Optimization Laboratory, Stanford University, Stanford (1991)

  14. Gill P.E., Saunders M.A., Shinnerl J.R.: On the stability of Cholesky factorization for symmetric quasidefinite systems. SIAM J. Matrix Anal. Appl. 17(1), 35–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl., 1–24 (2011). doi:10.1007/s10589-010-9361-3

  16. Gould N.I.M., Orban D., Toint P.L.: CUTEr and SifDec, a Constrained and Unconstrained Testing Environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harwell Subroutine Library: A collection of Fortran codes for large-scale scientific computation. AERE Harwell Laboratory (2000). http://www.numerical.rl.ac.uk/hsl

  18. Karypis G., Kumar V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)

    Article  MathSciNet  Google Scholar 

  19. Karypis G., Kumar V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kojima M., Megiddo N., Mizuno S.: A primal–dual infeasible-interior-point algorithm for linear programming. Math. Program. 61, 263–280 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mangasarian O.L., Meyer R.R.: Nonlinear perturbation of linear programs. SIAM J. Control Optim. 17(6), 745–752 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maros, I., Mészáros, C.: A repository of convex quadratic programming problems. Optim. Methods Softw. 11, 12, 671–681 (1999) (Special Issue on Interior Point Methods)

    Google Scholar 

  23. Mehrotra S.: On the implementation of a primal–dual interior-point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mészáros C.: On free variables in interior point methods. Optim. Methods Softw. 9, 121–139 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mittelmann, H.: http://plato.la.asu.edu/ftp/ampl_files/qpdataampl (2006)

  26. Netlib. http://netlib.org/lp (2011)

  27. Ng, E.G., Peyton, B.W.: Block sparse cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comput. 14(5), 1034–1056 (1993). doi:10.1137/0914063. http://link.aip.org/link/?SCE/14/1034/1

  28. Oliveira A.R.L., Sorensen D.C.: A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Linear Algebra Appl. 394, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Orban, D.: NLPy—a large-scale optimization toolkit in Python. Technical Report Cahier du GERAD G-2010-xx, GERAD, Montréal (2010). http://nlpy.sourceforge.net/.

  30. Rockafellar R.T.: The multiplier method of Hestenes and Powell applied to convex programming. J. Optim. Theory Appl. 12, 555–562 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rockafellar R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rusten, T., Winther, R.: A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix Anal. Appl. 13(3), 887–904 (1992). doi:10.1137/0613054. http://link.aip.org/link/?SML/13/887/1

  33. Saunders M.A.: Solution of sparse rectangular systems using LSQR and CRAIG. BIT 35, 588–604 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Saunders M.A.: Cholesky-based methods for sparse least squares: The benefits of regularization. In: Adams, L., Nazareth, J.L. (eds) Linear and Nonlinear Conjugate Gradient-Related Methods., pp. 92–100. SIAM, Philadelphia (1996)

    Google Scholar 

  35. Saunders, M.A.: PDCO: Primal–dual interior method for convex objectives (2010). http://www.stanford.edu/group/SOL/software/pdco.html

  36. Saunders, M.A., Tomlin, J.A.: Solving regularized linear programs using barrier methods and KKT systems. SOL Report 96-4, Dept. of EESOR, Stanford University (1996)

  37. Setiono R.: Interior proximal point algorithm for linear programs. J. Optim. Theory Appl. 74(3), 425–444 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Setiono R.: Interior dual proximal point algorithm for linear programs. Eur. J. Oper. Res. 77, 96–110 (1994)

    Article  MATH  Google Scholar 

  39. Silvester, D., Wathen, A.: Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners. SIAM J. Numer. Anal. 31(5), 1352–1367 (1994). doi:10.1137/0731070. http://link.aip.org/link/?SNA/31/1352/1

  40. Vanderbei R.J.: Interior-point methods: algorithms and formulations.. ORSA J. Comput. 6(1), 32–34 (1994)

    Article  MATH  Google Scholar 

  41. Vanderbei R.J.: Symmetric quasi-definite matrices. SIAM J. Optim. 5(1), 100–113 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wright S.J.: Implementing proximal point methods for linear programming. J. Optim. Theory Appl. 65((3), 531–554 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wright S.J.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Friedlander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedlander, M.P., Orban, D. A primal–dual regularized interior-point method for convex quadratic programs. Math. Prog. Comp. 4, 71–107 (2012). https://doi.org/10.1007/s12532-012-0035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12532-012-0035-2

Mathematics Subject Classification (2000)

Navigation