Abstract
Interior-point methods in augmented form for linear and convex quadratic programming require the solution of a sequence of symmetric indefinite linear systems which are used to derive search directions. Safeguards are typically required in order to handle free variables or rank-deficient Jacobians. We propose a consistent framework and accompanying theoretical justification for regularizing these linear systems. Our approach can be interpreted as a simultaneous proximal-point regularization of the primal and dual problems. The regularization is termedexact to emphasize that, although the problems are regularized, the algorithm recovers a solution of the original problem, for appropriate values of the regularization parameters.
Similar content being viewed by others
References
Altman A., Gondzio J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11(12), 275–302 (1999)
Altman, A., Gondzio, J. Higher order primal dual method (2009). http://www.maths.ed.ac.uk/~gondzio/software/hopdm.html
Anjos M.F., Burer S.: On handling free variables in interior-point methods for conic linear optimization. SIAM J. Optim. 18(4), 1310–1325 (2007)
Armand, P., Benoist, J.: Uniform boundedness of the inverse of a jacobian matrix arising in regularized interior-point methods. Math. Program. (2011). doi:10.1007/s10107-011-0498-3
Bellavia S., Gondzio J., Morini B.: Regularization and preconditioning of KKT systems arising in nonnegative least-squares problems. Numer. Linear Algebra Appl. 16(1), 39–61 (2009). doi:10.1002/nla.610
Bunch J.R., Parlett B.N.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8(4), 639–655 (1971)
Castro, J., Cuesta, J.: Quadratic regularizations in an interior-point method for primal block-angular problems. Math. Programm., 1–31 (2010). doi:10.1007/s10107-010-0341-2
Czyzyk, J., Mehrotra, S., Wagner, M., Wright, S.J.. PCx user guide version 1.1. Technical Report OTC 96/01, Optimization Technology Center, Evanston (1996). http://www.mcs.anl.gov/OTC/Tools/PCx
Fletcher R.: Practical Methods of Optimization, 2nd edn. Wiley, Chichester (1987)
Friedlander M.P., Leyffer S.: Global and finite termination of a two-phase augmented Lagrangian filter method for general quadratic programs. SIAM J. Sci. Comput. 30(4), 1706–1729 (2008). doi:10.1137/060669930
Friedlander M.P., Tseng P.: Exact regularization of convex programs. SIAM J. Optim. 18(4), 1326–1350 (2007). doi:10.1137/060675320
Gertz E.M., Wright S.J.: Object-oriented software for quadratic programming. ACM Trans. Math. Softw. 29(1), 58–81 (2003)
Gill, P.E., Murray, W., Ponceleón, D.B., Saunders, M.A.: Solving reduced KKT systems in barrier methods for linear and quadratic programming. Technical Report SOL 91-7, Systems Optimization Laboratory, Stanford University, Stanford (1991)
Gill P.E., Saunders M.A., Shinnerl J.R.: On the stability of Cholesky factorization for symmetric quasidefinite systems. SIAM J. Matrix Anal. Appl. 17(1), 35–46 (1996)
Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl., 1–24 (2011). doi:10.1007/s10589-010-9361-3
Gould N.I.M., Orban D., Toint P.L.: CUTEr and SifDec, a Constrained and Unconstrained Testing Environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)
Harwell Subroutine Library: A collection of Fortran codes for large-scale scientific computation. AERE Harwell Laboratory (2000). http://www.numerical.rl.ac.uk/hsl
Karypis G., Kumar V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)
Karypis G., Kumar V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)
Kojima M., Megiddo N., Mizuno S.: A primal–dual infeasible-interior-point algorithm for linear programming. Math. Program. 61, 263–280 (1993)
Mangasarian O.L., Meyer R.R.: Nonlinear perturbation of linear programs. SIAM J. Control Optim. 17(6), 745–752 (1979)
Maros, I., Mészáros, C.: A repository of convex quadratic programming problems. Optim. Methods Softw. 11, 12, 671–681 (1999) (Special Issue on Interior Point Methods)
Mehrotra S.: On the implementation of a primal–dual interior-point method. SIAM J. Optim. 2(4), 575–601 (1992)
Mészáros C.: On free variables in interior point methods. Optim. Methods Softw. 9, 121–139 (1998)
Mittelmann, H.: http://plato.la.asu.edu/ftp/ampl_files/qpdataampl (2006)
Netlib. http://netlib.org/lp (2011)
Ng, E.G., Peyton, B.W.: Block sparse cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comput. 14(5), 1034–1056 (1993). doi:10.1137/0914063. http://link.aip.org/link/?SCE/14/1034/1
Oliveira A.R.L., Sorensen D.C.: A new class of preconditioners for large-scale linear systems from interior point methods for linear programming. Linear Algebra Appl. 394, 1–24 (2005)
Orban, D.: NLPy—a large-scale optimization toolkit in Python. Technical Report Cahier du GERAD G-2010-xx, GERAD, Montréal (2010). http://nlpy.sourceforge.net/.
Rockafellar R.T.: The multiplier method of Hestenes and Powell applied to convex programming. J. Optim. Theory Appl. 12, 555–562 (1973)
Rockafellar R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)
Rusten, T., Winther, R.: A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix Anal. Appl. 13(3), 887–904 (1992). doi:10.1137/0613054. http://link.aip.org/link/?SML/13/887/1
Saunders M.A.: Solution of sparse rectangular systems using LSQR and CRAIG. BIT 35, 588–604 (1995)
Saunders M.A.: Cholesky-based methods for sparse least squares: The benefits of regularization. In: Adams, L., Nazareth, J.L. (eds) Linear and Nonlinear Conjugate Gradient-Related Methods., pp. 92–100. SIAM, Philadelphia (1996)
Saunders, M.A.: PDCO: Primal–dual interior method for convex objectives (2010). http://www.stanford.edu/group/SOL/software/pdco.html
Saunders, M.A., Tomlin, J.A.: Solving regularized linear programs using barrier methods and KKT systems. SOL Report 96-4, Dept. of EESOR, Stanford University (1996)
Setiono R.: Interior proximal point algorithm for linear programs. J. Optim. Theory Appl. 74(3), 425–444 (1992)
Setiono R.: Interior dual proximal point algorithm for linear programs. Eur. J. Oper. Res. 77, 96–110 (1994)
Silvester, D., Wathen, A.: Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners. SIAM J. Numer. Anal. 31(5), 1352–1367 (1994). doi:10.1137/0731070. http://link.aip.org/link/?SNA/31/1352/1
Vanderbei R.J.: Interior-point methods: algorithms and formulations.. ORSA J. Comput. 6(1), 32–34 (1994)
Vanderbei R.J.: Symmetric quasi-definite matrices. SIAM J. Optim. 5(1), 100–113 (1995)
Wright S.J.: Implementing proximal point methods for linear programming. J. Optim. Theory Appl. 65((3), 531–554 (1990)
Wright S.J.: Primal–Dual Interior-Point Methods. SIAM, Philadelphia (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Friedlander, M.P., Orban, D. A primal–dual regularized interior-point method for convex quadratic programs. Math. Prog. Comp. 4, 71–107 (2012). https://doi.org/10.1007/s12532-012-0035-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-012-0035-2