Fireworks algorithm framework for Big Data optimization | Memetic Computing Skip to main content
Log in

Fireworks algorithm framework for Big Data optimization

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

This paper presents a novel optimization framework based on the Fireworks Algorithm for Big Data Optimization problems. Indeed, the proposed framework is composed of two optimization algorithms. A single objective Fireworks Algorithm and a multi-objective Fireworks Algorithm are proposed for solving the Big Optimization of Signals problem “Big-OPT” which belongs to the Big Data Optimization problems class. The single objective Fireworks Algorithm adopts a modified search mechanism to ensure rapidity and preserve the explorative capacities of the basic Fireworks Algorithm. Afterward, the algorithm is extended to handle multi-objective optimization of Big-OPT with a supplementary special sparks phase and a novel strategy for next generation selection. To validate the performance of the framework, extensive tests on six EEG datasets are performed. The framework is also compared with several approaches from recent state of the art. The study concludes the competitive performance of the proposed framework in comparison with the other techniques reported in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Garlasu D, Sandulescu V, Halcu I, Neculoiu G, Grigoriu O, Marinescu M, Marinescu V (2013) A big data implementation based on Grid computing. In: 2013 11th Roedunet international conference (RoEduNet). IEEE, pp 1–4

  2. Han J, Haihong E, Le G, Du J (2011) Survey on NoSQL database. In: 2011 6th international conference on pervasive computing and applications (ICPCA). IEEE, pp 363–366

  3. PWG NBD (2015) NIST Big Data interoperability framework, vol 1. Definitions, pp 4–12

  4. Walls-Esquivel E, Vecchierini MF, Héberlé C, Wallois F (2007) Electroencephalography (EEG) recording techniques and artefact detection in early premature babies. Clin Neurophysiol 37(5):299–309

    Article  Google Scholar 

  5. http://www.husseinabbass.net/BigOpt.html. Accessed 25 April 2016

  6. Curran EA, Stokes MJ (2003) Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn 51(3):326–336

    Article  Google Scholar 

  7. Murthy JMK (2003) Some problems and pitfalls in developing countries. Epilepsia 44(s1):38–42

    Article  Google Scholar 

  8. Parvinnia E, Sabeti M, Zolghadri Jahromi M, Boostani R (2014) Classification of EEG Signals using adaptive weighted distance nearest neighbor algorithm. J King Saud Univ Comput Inf Sci 26(1):1–6

    Article  Google Scholar 

  9. Goh SK, Abbass HA, Tan KC, Al-Mamun A (2015) Decompositional independent component analysis using multi-objective optimization. Soft Computing, pp 1–16

  10. Sarker R, Elsayed S, SM (2015) An adaptive configuration of differential evolution algorithms for big data. IEEE Congress on Evolutionary Computation, Sendai, Japan , 25–28 May 2015

  11. Elsayed S, Sarker R (2016) Differential evolution framework for big data optimization. Memetic Computing, pp 1–17

  12. Goh SK, Tan KC, Al-Mamun A, Abbass HA (2015, May) Evolutionary big optimization (BigOpt) of signals. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 3332–3339

  13. Zhang Y, Zhou M, Jiang Z, Liu J (2015, May) A multi-agent genetic algorithm for big optimization problems. In: 2015 IEEE congress on evolutionary computation (CEC). IEEE, pp 703–707

  14. Zhang Y, Liu J, Zhou M, Jiang Z (2016) A multi-objective memetic algorithm based on decomposition for big optimization problems. Mem Comput 8(1):45–61

    Article  Google Scholar 

  15. Dorigo M, Stützle T (2009) Ant colony optimization: overview and recent advances. Techreport, IRIDIA, Universite Libre de Bruxelles

  16. Wang GG, Hossein Gandomi A, Yang XS, Hossein Alavi A (2014) A novel improved accelerated particle swarm optimization algorithm for global numerical optimization. Eng Comput 31(7):1198–1220

    Article  Google Scholar 

  17. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2014) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42(1):21–57

    Article  Google Scholar 

  18. Dasgupta D, Michalewicz Z (eds) (2013) Evolutionary algorithms in engineering applications. Springer, Berlin

    Google Scholar 

  19. Alami J, El Imrani A, Bouroumi A (2007) A multipopulation cultural algorithm using fuzzy clustering. Appl Soft Comput 7(2):506–519

  20. Aickelin U, Dasgupta D, Gu F (2014) Artificial immune systems. In: Search methodologies. Springer, New York, pp 187-211

  21. Dowsland KA, Thompson JM (2012) Simulated annealing. In: Handbook of natural computing. Springer, Berlin, pp 1623–1655

  22. Duman S, Güvenç U, Sönmez Y, Yörükeren N (2012) Optimal power flow using gravitational search algorithm. Energy Convers Manag 59:86–95

    Article  Google Scholar 

  23. Tan Y, Yu C, Zheng S, Ding K (2013) Introduction to fireworks algorithm. Int J Swarm Intell Res (IJSIR) 4(4):39–70

    Article  Google Scholar 

  24. Zheng S, Janecek A, Tan Y (2013) Enhanced fireworks algorithm. In: 2013 IEEE congress on evolutionary computation (CEC). IEEE, pp 2069–2077

  25. El Majdouli MA, El Imrani AA (2016) Discrete fireworks algorithm for single machine scheduling problems. Int J Appl Metaheuristic Comput (IJAMC) 7(3):Article 2

  26. Zitzler E, Thiele L (1998, September). Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Parallel problem solving from nature—PPSN V. Springer, Berlin, pp 292–301

  27. Omidvar M, Li X, Mei Y, Yao X (2014) Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans Evolut Comput 18(3):378–393. doi:10.1109/TEVC.2013.2281543

  28. Zhang J, Sanderson AC (2009) Jade: adaptive differential evolution with optional external archive. IEEE Trans Evolut Comput 13(5):945–958

    Article  Google Scholar 

  29. Tanabe R, Fukunaga A (2013a) Evaluating the performance of shade on cec 2013 benchmark problems. In: IEEE congress on evolutionary computation, pp 1952–1959. doi:10.1109/CEC.2013.6557798

  30. Qingfu Z, Wudong L, Hui L (2009) The performance of a new version of moea/d on cec09 unconstrained mop test instances. In: IEEE congress on evolutionary computation, pp 203–208

  31. http://www.husseinabbass.net/AuxDataNTools.pdf. Accessed 25 April 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amine El Majdouli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Majdouli, M.A., Rbouh, I., Bougrine, S. et al. Fireworks algorithm framework for Big Data optimization. Memetic Comp. 8, 333–347 (2016). https://doi.org/10.1007/s12293-016-0201-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-016-0201-6

Keywords

Navigation