Adaptive probabilistic harmony search for binary optimization problems | Memetic Computing
Skip to main content

Adaptive probabilistic harmony search for binary optimization problems

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

Harmony search (HS) is an optimization technique that uses several operators such as pitch adjustments to provide local improvement to candidate solutions during the optimization process. A standard pitch adjustment operator is known to be inefficient for binary domain optimization problems. A novel adaptive probabilistic harmony search (APHS) algorithm for binary optimization problems is proposed in this paper. APHS combines the power of the standard harmony search with the modelling capability of probabilistic search algorithms, with almost no extra user-tuned parameters. In APHS, the expected value of the search probability distribution is adapted using a sample of “good” vectors among the population to minimize the cross entropy between the actual distribution and the measured one. Moreover, Bernoulli probability distribution was used to enhance the pitch adjustment operator to fit the binary optimization domain. The effectiveness and the robustness of the proposed algorithm are shown by a thorough comparison with state-of-the-art existing techniques in a number of binary space optimization problems with variant complexities and sizes. The set of binary space optimization problems investigated in this paper include: Max-One problem, Order-3 deceptive problem, Bipolar Order-6 deceptive problem, Muehlenbein’s Order-5 problem, Knapsack problem, Multi-Knapsack problem, and finally a real-world problem of the satellite broadcast scheduling. Experimental results show that our proposed algorithm is indeed very effective and outperforms the existing algorithms by finding optimal solutions for almost all tested benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Geem Z, Kim J, Loganathan G (2001) A new heuristic optimization algorithm. Transactions of The society for modeling and simulation international—SIMULATION harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  2. Geem Z (2008) Novel derivative of harmony search algorithm for discrete design variables. Appl Math Comput 199(1):223–230

  3. Geem ZW (2006) Improved harmony search from ensemble of music players. In: Gabrys B, Howlett RJ, Jain LC (eds) KES (1). Lecture notes in computer science, vol 4251. Springer, Berlin, pp 86–93

  4. Mukhopadhyay A, Roy A, Das S, Das S, Abraham A (2008) Population-variance and explorative power of harmony search: an analysis. In: ICDIM’08, organized at Deen Dayal Upadhyaya College, New Delhi, India, pp 775–781

  5. Geem Z (2009) Music-inspired harmony search algorithm: theory and applications. Studies in computational intelligence. Springer, Berlin

    Book  Google Scholar 

  6. Alia OM, Mandava R (2011) The variants of the harmony search algorithm: an overview. Artif Intell Rev 36(1):49–68

    Article  Google Scholar 

  7. Kim J, Geem Z, Kim E (2001) Parameter estimation of the nonlinear muskingum model using harmony search. J Am Water Resour Assoc 37:1131–1138

    Article  Google Scholar 

  8. Geem ZW, Kim JH, Loganathan GV (2002) Harmony search optimization: application to pipe network design. Int J Model Simul 22(2):125–133

    Google Scholar 

  9. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82(9–10):781–798

    Article  Google Scholar 

  10. Geem ZW, Tseng C-L, Park Y (2005) Harmony search for generalized orienteering problem: best touring in China. In: Proceedings of the first international conference on advances in natural computation, ICNC’05, volume Part III. Springer, Berlin, pp 741–750

  11. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36–38):3902–3933

    Article  MATH  Google Scholar 

  12. Geem ZW (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38(3):259–277

    Article  Google Scholar 

  13. Seok Jang W, Il Kang H, Hee Lee B (2008) Hybrid simplex-harmony search method for optimization problems. In: IEEE congress on evolutionary computation. IEEE, pp 4157–4164

  14. Coelho LS, de Andrade Bernert DL (2009) An improved harmony search algorithm for synchronization of discrete-time chaotic systems. Chaos Solitons Fractals 41(5):2526–2532

    Article  MATH  Google Scholar 

  15. Al-Betar MA, Khader AT (2012) A harmony search algorithm for university course timetabling. Ann Oper Res 194(1):3–31

    Article  MATH  MathSciNet  Google Scholar 

  16. Abual-Rub M, Al-Betar M, Abdullah R, Khader A (2012) A hybrid harmony search algorithm for ab initio protein tertiary structure prediction. Netw Model Anal Health Inform Bioinform 1(3):69–85

  17. Omran MG, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198(2):643–656

    Article  MATH  MathSciNet  Google Scholar 

  18. Cheng YM, Li L, Lansivaara T, Chi SC, Sun YJ (2008) An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis. Eng Optim 40(2):95–115

    Article  Google Scholar 

  19. Geem ZW (2009) Particle-swarm harmony search for water network design. Eng Optim 41(4):297–311

    Article  Google Scholar 

  20. Al-Betar M, Doush I, Khader A, Awadallah M (2012) Novel selection schemes for harmony search. Appl Math Comput 218(10):6095–6117

    Article  MATH  Google Scholar 

  21. Pan Q-K, Wang L, Gao L (2011) A chaotic harmony search algorithm for the flow shop scheduling problem with limited buffers. J Appl Soft Comput 11(8):5270–5280

    Article  Google Scholar 

  22. Wang L, Xu Y, Mao Y, Fei M (2010) A discrete harmony search algorithm. In: Li K, Li X, Ma S, Irwin G (eds) Life system modeling and intelligent computing. Communications in computer and information science, vol 98. Springer, Berlin, pp 37–43

  23. Wang L, Mao Y, Niu Q, Fei M (2011) A multi-objective binary harmony search algorithm. In: Tan Y, Shi Y, Chai Y, Wang G (eds) Advances in swarm intelligence. Lecture notes in computer science, vol 6729. Springer, Berlin, pp 74–81

  24. Wang L, Yang R, Xu Y, Niu Q, Pardalos PM, Fei M (2013) An improved adaptive binary harmony search algorithm. Inf Sci 232:58–87

    Article  MathSciNet  Google Scholar 

  25. Larrañaga P, Lozano JA (eds) (2002) Estimation of distribution algorithms: a new tool for evolutionary computation. Kluwer, Dordrecht

    Google Scholar 

  26. Rubinstein RY, Kroese DP (2004) The cross-entropy method: a unified approach to combinatorial optimization, Monte-Carlo simulation and machine learning (information science and statistics), 1st edn. Springer, Berlin

    Book  Google Scholar 

  27. Pelikan M, Sastry K, Paz EC (2006) Scalable optimization via probabilistic modeling: from algorithms to applications (studies in computational intelligence). Springer, Secaucus

    Book  Google Scholar 

  28. de Boer P, Kroese DP, Mannor S, Rubinstein RY (2005) A tutorial on the cross entropy method. Ann Oper Res 134(1):19–67

    Article  MATH  MathSciNet  Google Scholar 

  29. Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol Comput 2:1–14

    Article  Google Scholar 

  30. Chen XS, Ong YS, Lim MH (2010) Research frontier: memetic computation—past, present & future. IEEE Comput Intell Mag 2(5):24–36

    Google Scholar 

  31. Chen XS, Ong YS, Lim MH, Tan KC (2011) A multi-facet survey on memetic computation. IEEE Trans Evol Comput 5(15):591–607

    Article  Google Scholar 

  32. Caserta M, Cabo-Nodar M (2009) A cross entropy based algorithm for reliability problems. J Heuristics 15(5):479–501

    Article  MATH  Google Scholar 

  33. Rubinstein RY (1996) Optimization of computer simulation models with rare events. Eur J Oper Res 99:89–112

    Article  Google Scholar 

  34. Rubinstein R (1999) The cross-entropy method for combinatorial and continuous optimization. Methodol Comput Appl Probab 1(2):127–190

    Article  MATH  MathSciNet  Google Scholar 

  35. Rubinstein RY (2001) Combinatorial optimization, cross-entropy, ants and rare events. In: Uryasev S, Pardalos PM (eds) Stochastic optimization: algorithms and applications. Kluwer, Dordrecht, pp 304–358

    Google Scholar 

  36. Alon G, Kroese DP, Raviv T, Rubinstein RY (2005) Application of the cross-entropy method to the buffer allocation problem in a simulation-based environment. Ann OR 134(1):137–151

    Article  MATH  MathSciNet  Google Scholar 

  37. Chepuri K, de Mello TH (2005) Solving the vehicle routing problem with stochastic demands using the cross-entropy method. Ann Oper Res 134(1):153–181

    Article  MATH  MathSciNet  Google Scholar 

  38. Rubinstein RY (2002) Cross-entropy and rare events for maximal cut and partition problems. ACM Trans Model Comput Simul 12(1):27–53

    Article  Google Scholar 

  39. Keith J, Kroese DP (2002) SABRES: sequence alignment by rare event simulation. In: Proceedings of the winter simulation conference, San Diego, pp 320–327

  40. Wang L, Wang X, Fu J, Zhen L (2008) A novel probability binary particle swarm optimization algorithm and its application. J Softw 3(9):28–35

    Article  Google Scholar 

  41. Deng C, Zhao B, Yang Y, Deng A (2010) Novel binary differential evolution without scale factor f. In: Third international workshop on advanced computational intelligence, Suzhou, Jiangsu, China, pp 250–253

  42. Goldberg DE, Deb K, Korb B (1990) Messy genetic algorithms revisited: studies in mixed size and scale. Complex Syst 4(4):415–444

    MATH  Google Scholar 

  43. Salman AA, Mehrotra K, Mohan CK (2000) Adaptive linkage crossover. Evol Comput 8(3):341–370

    Article  Google Scholar 

  44. Goldberg DE, Deb K, Horn J (1992) Massive multimodality, deception, and genetic algorithms. In: Ma”nner R, Manderick B (eds) Parallel problem solving from nature 2, PPSN-II, Brussels, Belgium, September 28–30. Elsevier, Amsterdam, pp 37–48

  45. Mühlenbein H, Mahnig T, Rodriguez AO (1999) Schemata, distributions and graphical models in evolutionary optimization. J Heuristics 5(2):215–247

    Article  MATH  Google Scholar 

  46. Ansari N, Hou ESH, Yu Y (1995) A new method to optimize the satellite broadcasting schedules using the mean field annealing of a Hopfield neural network. IEEE Trans Neural Netw Learn Syst 6(2):470–483

    Article  Google Scholar 

  47. Funabiki N, Nishikawa S (1997) A binary Hopfield neural-network approach for satellite broadcast scheduling problems. Trans Neural Netw 8(2):441–445

    Article  Google Scholar 

  48. Shen YJ, Wang MS (2007) Optimizing satellite broadcast scheduling problem using the competitive Hopfield neural network. In: IEEE wireless telecommunications symposium (WTS-2007), Pomona, CA, pp 1–6

  49. Chen J-C, Wen CK, Ting P (2008) Factor graphs for satellite broadcast scheduling problems. In: IEEE 68th vehicular technology conference, Canada, pp 1–5

  50. Salman A (2014) Satellite broadcast scheduling problem. Ayed Salman’s personal website. https://sites.google.com/site/ayedsalman/research/sbsp. Accessed Feb 2014

Download references

Acknowledgments

This work was supported by Kuwait University Research Grant No. [EO 03/09].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayed A. Salman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, A., Omran, M.G. & Ahmad, I. Adaptive probabilistic harmony search for binary optimization problems. Memetic Comp. 7, 291–316 (2015). https://doi.org/10.1007/s12293-015-0163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-015-0163-0

Keywords