Abstract
This paper presents an evaluation of a potential new interaction mode in virtual reality (VR) to determine whether it provides any positive impact in terms of how users interact with content. We evaluated the user experiences for 3D object manipulation across three modes of interaction. Interaction using controllers and gestures are used as baselines from which to gauge the potential value of the new mode of interaction, where a single controller and gestures are combined. This paper reports on a user study that captures quantitative and qualitative data related to a variety of object manipulation tasks in a Virtual Environment (VE). We investigated the impact of this new interaction mode with 40 participants across a number of interaction tasks, with the quantitative evaluation indicating that generally, the mixed mode of interaction resulted in task completion times consistently faster than gesture-based interaction and, in some cases, faster than with the use of controllers alone. A qualitative evaluation of the user experience indicated potential application areas for the new mode of interaction.
Similar content being viewed by others
References
Araújo T, Santos C, Miranda B, Carneiro N, Marques A, Mota M, Meiguins B (2016) Aspects of voice interaction on a mobile augmented reality application. In: Lackey S, Shumaker R (eds) Virtual, augmented and mixed reality, vol 9740. Lecture Notes in Computer Science. Springer, Cham, pp 199–210
Bossavit B, Marzo A, Ardaiz O, De Cerio LD, Pina A (2014) Design choices and their implications for 3D mid-air manipulation techniques. Presence 23(4):377–392. https://doi.org/10.1162/PRES_a_00207
Bowman D, Coquillart S, Froehlich B, Hirose M, Kitamura Y, Kiyokawa K, Stuerzlinger W (2008) 3D user interfaces: new directions and perspectives. IEEE Comput Graphics Appl 28(6):20–36. https://doi.org/10.1109/MCG.2008.109
Bowman DA, Gabbard JL, Hix D (2002) A survey of usability evaluation in virtual environments: classification and comparison of methods. Presence 11(4):404–424. https://doi.org/10.1162/105474602760204309
Burdea G, Richard P, Coiffet P (1996) Multimodal virtual reality: input-output devices, system integration, and human factors. Int J Hum Comput Interact 8(1):5–24. https://doi.org/10.1080/10447319609526138
Cabral MC, Morimoto CH, Zuffo MK (2005) On the usability of gesture interfaces in virtual reality environments. In: Proceedings of the 2005 Latin American conference on human-computer interaction—CLIHC’05. ACM Press, Cuernavaca, pp 100–108
Caputo FM, Giachetti A (2015) Evaluation of basic object manipulation modes for low-cost immersive Virtual Reality. In: Proceedings of the 11th biannual conference on Italian SIGCHI chapter. ACM, Rome, pp 74–77
Chang E, Kim H-T, Yoo B (2020) Virtual reality sickness: a review of causes and measurements. Int J Hum Comput Interact 36:1–25. https://doi.org/10.1080/10447318.2020.1778351
Choi I, Ofek E, Benko H, Sinclair M, Holz C (2018). CLAW: a multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. In: Proceedings of the 2018 CHI conference on human factors in computing systems. ACM, Montreal QC, pp 1–13
Costa D, Duarte C (2011) Adapting multimodal fission to user’s abilities. 6765:347-356
Dinno A (2015) Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J 15(1):292–300. https://doi.org/10.1177/1536867X1501500117
Drogemuller A, Cunningham A, Walsh J, Thomas BH, Cordeil M, Ross W (2020) Examining virtual reality navigation techniques for 3D network visualisations. J Comput Lang 56:100937. https://doi.org/10.1016/j.cola.2019.100937
Foottit J, Brown D, Marks S, Connor A (2016) Development of a wearable haptic game interface. EAI Endor Trans Creat Technol 3:e5. https://doi.org/10.4108/eai.25-4-2016.151165
Gerhard D, Norton WJ (2022) Virtual reality usability design, 1st edn. CRC Press, Boca Raton
Glonek G, Pietruszka M (2012) Natural user interfaces (NUI): review. J Appl Comput Sci 20:27–45
Hansberger J, Peng C, Blakely V, Meacham S, Cao L, Diliberti N (2019) A multimodal interface for virtual information environments, pp 59–70
Iqbal H, Latif S, Yan Y, Yu C, Shi Y (2021) Reducing arm fatigue in virtual reality by introducing 3d-spatial offset. IEEE Access 9:64085–64104. https://doi.org/10.1109/ACCESS.2021.3075769
Iskander J, Hossny M, Nahavandi S (2018) A review on ocular biomechanic models for assessing visual fatigue in virtual reality. IEEE Access 6:19345–19361. https://doi.org/10.1109/ACCESS.2018.2815663
Ivankova N, Wingo N (2018) Applying mixed methods in action research: methodological potentials and advantages. Am Behav Sci 62(7):978–997. https://doi.org/10.1177/0002764218772673
Jacob RJK, Leggett JJ, Myers BA, Pausch R (1993) Interaction styles and input/output devices. Behav Inform Technol 12(2):69–79. https://doi.org/10.1080/01449299308924369
Jang S, Vitale JM, Jyung RW, Black JB (2017) Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Comput Educ 106:150–165. https://doi.org/10.1016/j.compedu.2016.12.009
Jeong S, Jung ES, Im Y (2016) Ergonomic evaluation of interaction techniques and 3D menus for the practical design of 3D stereoscopic displays. Int J Ind Ergon 53:205–218. https://doi.org/10.1016/j.ergon.2016.01.001
Jerald J (2016) The VR book: human-centered design for virtual reality, No 8. Association for Computing Machinery Morgan & Claypool Publishers, New York
Jones S (2017) Disrupting the narrative: immersive journalism in virtual reality. J Media Pract 18(2–3):171–185. https://doi.org/10.1080/14682753.2017.1374677
Kangas J, Kumar SK, Mehtonen H, Järnstedt J, Raisamo R (2022) Trade-off between task accuracy, task completion time and naturalness for direct object manipulation in virtual reality. Multimodal Technol Interact 6(1):6. https://doi.org/10.3390/mti6010006
Kwon J, Kim J-Y, Nam S (2017) Designing 3D menu interfaces for spatial interaction in virtual environments. Int J Grid Distrib Comput 10(12):31–38. https://doi.org/10.14257/ijgdc.2017.10.12.04
LaValle SM (2020) Virtual reality. Cambridge University Press, Cambridge
LaViola JJ (2000) A discussion of cybersickness in virtual environments. ACM SIGCHI Bull 32(1):47–56. https://doi.org/10.1145/333329.333344
Li Y, Huang J, Tian F, Wang H-A, Dai G-Z (2019) Gesture interaction in virtual reality. Virtual Real Intell Hardw 1(1):84–112. https://doi.org/10.3724/SP.J.2096-5796.2018.0006
Li Y, Wu D, Huang J, Tian F, Wang H, Dai G (2019) Influence of multi-modality on moving target selection in virtual reality. Virtual Real Intell Hardw 1(3):303–315. https://doi.org/10.3724/SP.J.2096-5796.2019.0013
Lidwell W, Holden K, Butler J (2003) Universal principles of design. Rockport, Gloucester, Mass
Lou X, Li XA, Hansen P, Du P (2021) Hand-adaptive user interface: improved gestural interaction in virtual reality. Virtual Real 25(2):367–382. https://doi.org/10.1007/s10055-020-00461-7
Marriott K et al (eds) (2018) Immersive analytics, vol 11190. Springer, Cham
Martin D, Malpica S, Gutierrez D, Masia B, Serrano A (2022) Multimodality in VR: a survey. ACM Comput Surv 54(10s):1–36. https://doi.org/10.1145/3508361
Martinko M, Gardner W (2019) Beyond structured observation: methodological issues and new directions, pp 243–262
McKight P, Najab J (2010) Kruskal–Wallis test, vol 1
McMahan RP, Gorton D, Gresock J, McConnell W, Bowman DA (2006) Separating the effects of level of immersion and 3D interaction techniques. In: Proceedings of the ACM symposium on virtual reality software and technology. ACM, Limassol Cyprus, pp 108–111
Mendes D, Fonseca F, Araujo B, Ferreira A, Jorge J (2014) Mid-air interactions above stereoscopic interactive tables. In: 2014 IEEE symposium on 3D user interfaces (3DUI). IEEE, MN, pp 3–10
Mohamad Yahya Fekri A, AjuneWanis I (2019) A review on multimodal interaction in mixed reality environment. IOP Conf Ser Mater Sci Eng 551(1):012049. https://doi.org/10.1088/1757-899X/551/1/012049
Moustafa F, Steed A (2018). A longitudinal study of small group interaction in social virtual reality. In: Proceedings of the 24th ACM symposium on virtual reality software and technology. ACM, Tokyo, pp 1–10
Murray JH (2011) Inventing the medium: principles of interaction design as a cultural practice. The MIT Press, Cambridge
Murthy G, Jadon R (2009) A review of vision based hand gestures recognition. IJITKM 2:405–410
Nanjappan V, Liang H-N, Lu F, Papangelis K, Yue Y, Man KL (2018) User-elicited dual-hand interactions for manipulating 3D objects in virtual reality environments. HCIS 8(1):31. https://doi.org/10.1186/s13673-018-0154-5
Olmedo H, Escudero D, Cardeñoso V (2015) Multimodal interaction with virtual worlds XMMVR: eXtensible language for MultiModal interaction with virtual reality worlds. J Multimodal User Interfaces 9(3):153–172. https://doi.org/10.1007/s12193-015-0176-5
O’Shaughnessy D (2003) Interacting with computers by voice: automatic speech recognition and synthesis. Proc IEEE 91(9):1272–1305. https://doi.org/10.1109/JPROC.2003.817117
Pamungkas DS, Ward K (2016) Electro-tactile feedback system to enhance virtual reality experience. Int J Comput Theory Eng 8(6):465–470. https://doi.org/10.7763/IJCTE.2016.V8.1090
Perret J, Vander Poorten E (2018) Touching virtual reality: a review of haptic gloves. In: Actuator 2018; 16th international conference on new actuators, pp 1–5
Piumsomboon T, Lee G, Lindeman R, Billinghurst M (2017) Exploring natural eye-gaze-based interaction for immersive virtual reality, pp 36–39
Polit DF, Beck CT (2017) Nursing research: generating and assessing evidence for nursing practice, 10th edn. Wolters Kluwer Health Philadelphia, Philadelphia
Ramaseri Chandra AN, El Jamiy F, Reza H (2019) A review on usability and performance evaluation in virtual reality systems. In: 2019 International conference on computational science and computational intelligence (CSCI). IEEE, Las Vegas, pp 1107–1114
Rantamaa H-R, Kangas J, Jordan M, Mehtonen H, Mäkelä J, Ronkainen K, Raisamo R (2022) Evaluation of virtual handles for dental implant manipulation in virtual reality implant planning procedure. Int J Comput Assisted Radiol Surg 17(9):1723–1730. https://doi.org/10.1007/s11548-022-02693-1
Santos A, Zarraonandia T, Díaz P, Aedo I (2017) A comparative study of menus in virtual reality environments. In: Proceedings of the 2017 ACM international conference on interactive surfaces and spaces. ACM, Brighton, pp 294–299
Schalkwyk J, Beeferman D, Beaufays F, Byrne B, Chelba C, Cohen M, Strope B (2010) your word is my command: Google search by voice: a case study. In: Neustein A (ed) Advances in speech recognition: mobile environments, call centers and clinics. Springer, US, Boston, MA, pp 61–90
Seinfeld S, Feuchtner T, Maselli A, Müller J (2021) User representations in human-computer interaction. Hum Comput Interact 36(5–6):400–438. https://doi.org/10.1080/07370024.2020.1724790
Song P, Goh WB, Hutama W, Fu C-W, Liu X (2012) A handle bar metaphor for virtual object manipulation with mid-air interaction. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, Austin, pp 1297–1306
Spanlang B, Normand J-M, Borland D, Kilteni K, Giannopoulos E, As Pomés, Slater M (2014) How to build an embodiment lab: achieving body representation illusions in virtual reality. Front Robot AI. https://doi.org/10.3389/frobt.2014.00009
Suarez Fernandez RA, Sanchez-Lopez JL, Sampedro C, Bavle H, Molina M, Campoy P (2016) Natural user interfaces for human-drone multi-modal interaction. In: 2016 International conference on unmanned aircraft systems (ICUAS). IEEE, Arlington, pp 1013–1022
Sudha M, Sriraghav K, Abisheck S, Jacob S, Manisha S (2017) Approaches and applications of virtual reality and gesture recognition: a review. Int J Ambient Comput Intell 8:1–18. https://doi.org/10.4018/IJACI.2017100101
Sutcliffe AG, Poullis C, Gregoriades A, Katsouri I, Tzanavari A, Herakleous K (2019) Reflecting on the design process for virtual reality applications. Int J Hum Comput Interact 35(2):168–179. https://doi.org/10.1080/10447318.2018.1443898
Taherdoost H (2019) What is the best response scale for survey and questionnaire design; review of different lengths of rating scale / attitude scale / likert scale. Int J Acad Res Manag 8(1):1–10
Wagner J, Stuerzlinger W, Nedel L (2021) Comparing and combining virtual hand and virtual ray pointer interactions for data manipulation in immersive analytics. IEEE Trans Visual Comput Graphics 27(5):2513–2523. https://doi.org/10.1109/TVCG.2021.3067759
Wang Y, Zhai G, Chen S, Min X, Gao Z, Song X (2019) Assessment of eye fatigue caused by head-mounted displays using eye-tracking. Biomed Eng Online 18(1):111. https://doi.org/10.1186/s12938-019-0731-5
Wilson V (2014) Research methods: triangulation. Evid Based Libr Inf Pract 9:74–75. https://doi.org/10.18438/B8WW3X
Yang KCC (2019) Cases on immersive virtual reality techniques. IGI Global, Hershey, PA
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lee, Y., Connor, A.M. & Marks, S. Mixed interaction: evaluating user interactions for object manipulations in virtual space. J Multimodal User Interfaces 18, 297–311 (2024). https://doi.org/10.1007/s12193-024-00431-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12193-024-00431-2