An extended eigenvalue-free interval for the eccentricity matrix of threshold graphs | Journal of Applied Mathematics and Computing Skip to main content
Log in

An extended eigenvalue-free interval for the eccentricity matrix of threshold graphs

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We show that the eigenvalue-free interval for the eccentricity matrix of every threshold graph can be extended from \((-2,-1)\), as shown in [Z. Qiu, Z. Tang, On the eccentricity spectra of threshold graphs. Discrete Appl. Math. 310, 75–85 (2022)], to \((-1-\sqrt{2},-2)\cup (-2,-1)\), and to a larger interval if we exclude certain pathological cases. Our results are based on the fact that the characteristic matrix of the quotient matrix of the eccentricity matrix of a threshold graph is row equivalent to a particular tridiagonal matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alazemi, A., Anđelić, M., Koledin, T., Stanić, Z.: Eigenvalue-free intervals of distance matrices of threshold and chain graphs. Linear Multilinear Algebra 69, 2959–2975 (2021)

  2. Alazemi, A., Anđelić, M., Simić, S.K.: Eigenvalue location for chain graphs. Linear Algebra Appl. 505, 194–210 (2016)

    Article  MATH  Google Scholar 

  3. Anđelić, M., da Fonseca, C.M.: Sufficient conditions for positive definiteness of tridiagonal matrices revisited. Positivity 15, 155–159 (2011)

    Article  MATH  Google Scholar 

  4. Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  5. Mahato, I., Gurusamy, R., Kannan, M. Rajesh., Arockiaraj, S.: Spectra of eccentricity matrices of graphs. Discrete Appl. Math. 285, 252–260 (2020)

    Article  MATH  Google Scholar 

  6. Qiu, Z., Tang, Z.: On the eccentricity spectra of threshold graphs. Discrete Appl. Math. 310, 75–85 (2022)

    Article  MATH  Google Scholar 

  7. Rózsa, P.: On periodic continuants. Linear Algebra Appl. 2, 267–274 (1969)

    Article  MATH  Google Scholar 

  8. Wang, J., Lu, M., Belardo, F., Randić, M.: The anti-adjacency matrix of a graph: Eccentricity matrix. Discrete Appl. Math. 251, 299–309 (2018)

    Article  MATH  Google Scholar 

  9. Wang, J., Lu, M., Lu, L., Belardo, F.: Spectral properties of the eccentricity matrix of graphs. Discrete Appl. Math. 279, 168–177 (2020)

    Article  MATH  Google Scholar 

  10. Wei, W., Li, S., Zhang, L.: Characterizing the extremal graphs with respect to the eccentricity spectral radius, and beyond, Discrete Math., 345, #112686 (2022)

  11. Wei, W., Li, S.: On the eccentricity spectra of complete multipartite graphs, Appl. Math. Comput., 424, #127036 (2022)

Download references

Acknowledgements

We would like to thank anonymous referees for their careful reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milica Anđelić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anđelić, M., Fonseca, C.M.d., Koledin, T. et al. An extended eigenvalue-free interval for the eccentricity matrix of threshold graphs. J. Appl. Math. Comput. 69, 491–503 (2023). https://doi.org/10.1007/s12190-022-01758-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-022-01758-3

Keywords

Mathematics Subject Classification

Navigation