Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations | Journal of Applied Mathematics and Computing Skip to main content
Log in

Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

We study the sine-transform-based splitting preconditioning technique for the linear systems arising in the numerical discretization of time-dependent one dimensional and two dimensional Riesz space fractional diffusion equations. Those linear systems are Toeplitz-like. By making use of diagonal-plus-Toeplitz splitting iteration technique, a sine-transform-based splitting preconditioner is proposed to accelerate the convergence rate efficiently when the Krylov subspace method is implemented. Theoretically, we prove that the spectrum of the preconditioned matrix of the proposed method is clustering around 1. In practical computations, by the fast sine transform the computational complexity at each time level can be done in \({{\mathcal {O}}}(n\log n)\) operations where n is the matrix size. Numerical examples are presented to illustrate the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38, 191–206 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bai, J., Feng, X.: Fractional-order anisotropic diffusion for image denoising. IEEE Tran. Image Proc. 16, 2492–2502 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Linear Algebra Appl. 24, e2093 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benedetto, F.: Analysis of preconditioning techniques for ill-conditioned Toeplitz matrices. SIAM J. Sci. Comput. 16(3), 682–697 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benson, D., Wheatcraft, W., Meerschaert, M.: Application of a fractional advectiondispersion equation. Water Resour. Res. 36, 1403–1413 (2000)

    Article  Google Scholar 

  6. Bini, D., Benedetto, F.: A new preconditioner for the parallel solution of positive definite Toeplitz systems. In: Proceedings of 2nd SPAA Conference on Crete (Greece), pp. 220–223 (1990)

  7. Carreras, A., Lynch, E., Zaslavsky, M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys. Plasma 8, 5096–5103 (2001)

    Article  Google Scholar 

  8. Chan, R., Jin, X.: A Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  9. Chen, M., Deng, W., Wu, Y.: Superlinearly convergent algorithms for the twodimensional space-time Caputo-Riesz fractional diffusion equations. Appl. Numer. Math. 70, 22–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, X., Duan, J., Li, D.: A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations. Appl. Math. Comput. 346, 452–464 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Gafiychuk, V., Datsko, B., Meleshko, V.: Mathematical modeling of time fractional reaction diffusion systems. J. Math. Anal. Appl. 220, 215–225 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Jin, X.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press, Beijing (2010)

    Google Scholar 

  13. Kundu, S.: Suspension concentration distribution in turbulent flows: an analytical study using fractional advection-diffusion equation. Physica A Stat. Mech. Appl. 506, 135–155 (2018)

    Article  MathSciNet  Google Scholar 

  14. Lei, S., Chen, X., Zhang, X.: Multilevel circulant preconditioner for high-dimensional fractional diffusion equations. East Asian J. Appl. Math. 6(2), 109–130 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, F., Turner, I., Anh, V., Yang, Q., Burrage, K.: A numerical method for the fractional Fitzhugh-Nagumo monodomain model. ANZIAM J. 54, C608–C629 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meerschaert, M., Scalas, E.: Coupled continuous time random walks in finance. Physica A 390, 114–118 (2006)

    Article  MathSciNet  Google Scholar 

  18. Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-Cdispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meerschaert, M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meerschaert, M., Scheffler, H., Tadjeran, C.: Finite difference methods for two dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mishra, J.: Fractional hyper-chaotic model with no equilibrium. Chaos Solitons Fractals 116, 43–53 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  24. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  25. Serra, S.: Superlinear PCG methods for symmetric Toeplitz systems. Math. Comput. 68, 793–803 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referees for their invaluable comments and very detailed suggestions that have greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Wei Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research is funded in part by the National Natural Science Foundation of China under Grant 12001104, the Guangdong Basic and Applied Basic Research Foundation under Grant Nos. 2019A1515110279; 2019A1515110893; 2019A1515010789, and the Science and Technology Development Fund, Macau SAR (file no. 0118/2018/A3), MYRG2018-00015-FST from University of Macau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Fang, ZW. & Sun, HW. Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations. J. Appl. Math. Comput. 66, 673–700 (2021). https://doi.org/10.1007/s12190-020-01454-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01454-0

Keywords

Mathematics Subject Classification

Navigation