Abstract
A standard sixth order compact finite difference scheme for two dimensional Helmholtz equation is further improved and a more accurate scheme is presented for the two dimensional Helmholtz equation which is also compact. The novel feature of the present scheme is that it is less sensitive to the associated wave number when compared with that for available sixth order schemes. Theoretical analysis is presented for the newly constructed scheme. The high accuracy of the proposed scheme is illustrated by comparing numerical solutions for solving the two dimensional Helmholtz equations using available sixth-order schemes and the present scheme.











Similar content being viewed by others
References
Al-Said, E.A., Noor, M.A., Al-Shejari, A.A.: Numerical solutions for system of second order boundary value problems. Korean J. Comput. Appl. Math. 5(3), 659–667 (1998)
Ames, W.F.: Numerical Methods for Partial Differential Equations. Academic press, Cambridge (2014)
Babuška, I.M., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)
Bayliss, A., Goldstein, C.I., Turkel, E.: The numerical solution of the Helmholtz equation for wave propagation problems in underwater acoustics. Comput. Math. Appl. 11(7–8), 655–665 (1985)
Bayliss, A., Goldstein, C.I., Turkel, E.: On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59(3), 396–404 (1985)
Chawla, M.M.: A sixth-order tridiagonal finite difference method for general non-linear two-point boundary value problems. IMA J. Appl. Math. 24(1), 35–42 (1979)
Dastour, H., Liao, W.: A fourth-order optimal finite difference scheme for the Helmholtz equation with PML. Comput. Math. Appl. 78(6), 2147–2165 (2019)
Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47(4), 2872–2896 (2009)
Fournié, M., Karaa, S.: Iterative methods and high-order difference schemes for 2D elliptic problems with mixed derivative. J. Appl. Math. Comput. 22(3), 349–363 (2006)
Fu, Y.: Compact fourth-order finite difference schemes for Helmholtz equation with high wave numbers. J. Comput. Math. 26, 98–111 (2008)
Hackbusch, W.: Iterative solution of large sparse systems of equations. Springer, Berlin (1994)
Harari, I., Hughes, T.J.R.: Finite element methods for the Helmholtz equation in an exterior domain: model problems. Comput. Methods Appl. Mech. Eng. 87(1), 59–96 (1991)
Harari, I., Turkel, E.: Accurate finite difference methods for time-harmonic wave propagation. J. Comput. Phys. 119(2), 252–270 (1995)
Ihlenburg, F., Babuška, I.M.: Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)
Ihlenburg, F., Babuška, I.M.: Finite element solution of the Helmholtz equation with high wave number part II: the hp version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)
Manohar, R.P., Stephenson, J.W.: Single cell high order difference methods for the Helmholtz equation. J. Comput. Phys. 51(3), 444–453 (1983)
Nabavi, M., Siddiqui, M.H.K., Dargahi, J.: A new 9-point sixth-order accurate compact finite-difference method for the Helmholtz equation. J. Sound Vib. 307(3), 972–982 (2007)
Patel, K.S., Mehra, M.: A numerical study of Asian option with high-order compact finite difference scheme. J. Appl. Math. Comput. 57(1–2), 467–491 (2018)
Peiró, J., Sherwin, S.: Finite difference, finite element and finite volume methods for partial differential equations. In: Yip, S. (ed.) Handbook of materials modeling, 2415–2446. Springer (2005)
Settle, S.O., Douglas, C.C., Kim, I., Sheen, D.: On the derivation of highest-order compact finite difference schemes for the one-and two-dimensional Poisson equation with Dirichlet boundary conditions. SIAM J. Numer. Anal. 51(4), 2470–2490 (2013)
Shaw, R.P.: Integral equation methods in acoustics. Bound. Elem. X 4, 221–244 (1988)
Sheu, T.W.H., Hsieh, L.W., Chen, C.F.: Development of a three-point sixth-order Helmholtz scheme. J. Comput. Acoust. 16(3), 343–359 (2008)
Singer, I., Turkel, E.: High-order finite difference methods for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 163(1–4), 343–358 (1998)
Singer, I., Turkel, E.: Sixth-order accurate finite difference schemes for the Helmholtz equation. J. Comput. Acoust. 14(3), 339–351 (2006)
Sutmann, G.: Compact finite difference schemes of sixth order for the Helmholtz equation. J. Comput. Appl. Math. 203(1), 15–31 (2007)
Thomas, J.W.: Numerical Partial Differential Equations: Conservation Laws and Elliptic Equations. Springer, Berlin (2013)
Turkel, E., Gordon, D., Gordon, R., Tsynkov, S.: Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number. J. Comput. Phys. 232(1), 272–287 (2013)
Wu, T., Xu, R.: An optimal compact sixth-order finite difference scheme for the Helmholtz equation. Comput. Math. Appl. 75, 2520–2537 (2018)
Young, D.M.: Iterative Solution of Large Linear Systems. Elsevier, Amsterdam (2014)
Zhang, Y., Wang, K., Guo, R.: Sixth-order finite difference scheme for the Helmholtz equation with inhomogeneous Robin boundary condition. Adv. Differ. Equ. 2019(1), 362 (2019)
Acknowledgements
The authors sincerely thank the editor and anonymous referees for detailed and very helpful suggestions and comments which significantly improved the presentation of this paper. The research work to the first author is supported by SRM Institute of Science and Technology Kattankulathur, Tamil Nadu India. The authors also acknowledge the SERB, New Delhi, India towards computational facility through project file No. MTR/2017/000187. Discussions with Dr. Shuvam Sen is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by the SRMIST, Tamil Nadu; and SERB New Delhi, India under Grant [MTR/2017/000187].
Rights and permissions
About this article
Cite this article
Kumar, N., Dubey, R.K. A new development of sixth order accurate compact scheme for the Helmholtz equation. J. Appl. Math. Comput. 62, 637–662 (2020). https://doi.org/10.1007/s12190-019-01301-x
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-019-01301-x