Total generalized variation denoising of speckled images using a primal-dual algorithm | Journal of Applied Mathematics and Computing Skip to main content
Log in

Total generalized variation denoising of speckled images using a primal-dual algorithm

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, multiplicative noise removal problem is considered. Multiplicative noise is also commonly referred to as speckle. We propose a total generalized variation (TGV) based model which involves the multilook M for multiplicative noise removal. The objective function of our proposed model is strictly convex. Computationally, by using the dual representation of the second-order TGV regularization, our proposed model is transformed into a minimax problem. A first-order primal-dual algorithm is developed to solve the minimax problem and the convergence of the proposed algorithm is strictly proved. At last, compared with several existing methods, experimental results demonstrate the effectiveness of the proposed method, in terms of signal-to-noise ratio, peak signal-to-noise ratio and mean absolute-deviation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li, F., Ng, M., Shen, C.: Multiplicative noise removal with spatial-varying regularization parameters. SIAM J. Imaging Sci. 3, 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jin, Z., Yang, X.: Analysis of a new variational model for multiplicative noise removal. J. Math. Anal. Appl. 362(2), 415–426 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas–Rachford splitting methods. J. Math. Imaging Vis. 36, 168–184 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, B., Cai, J., Chen, W.: A multiplicative noise removal approach based on partial differential equation model. Math. Probl. Eng. 2012, 1035–1052 (2012)

  5. Teuber, T., Lang, A.: Nonlocal filters for removing multiplicative noise. In: Scale space and variational methods in computer vision, pp 50–61 (2012)

    Google Scholar 

  6. Yun, S., Woo, H.: A new multiplicative denoising variational model based on \(m\)th root transformation. IEEE Trans. Image Process. 21, 2523–2533 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yin, D., Gu, Y., Xue, P.: Speckle-constrained variational methods for image restoration in optical coherence tomography. J. Opt. Soc. Amer. 30, 878–885 (2013)

    Article  Google Scholar 

  8. Liu, G., Zeng, X., Tian, F., et al.: Speckle reduction by adaptive window anisotropic diffusion. Signal Process. 89(11), 2233–2243 (2009)

    Article  MATH  Google Scholar 

  9. Hao, Y., Feng, X., Xu, J.: Multiplicative noise removal via sparse and redundant representations over learned dictionaries and total variation. Signal Process. 92(6), 1536–1549 (2012)

    Article  Google Scholar 

  10. Rudin, L., Lions, P., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. In: Geometric Level Sets in Imaging, Vision and Graphics. Springer, New York (2003)

  11. Aubert, G., Aujol, J.: A variational approach to remove multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Y., Ng, M., Wen, Y.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2(1), 20–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bioucas-Dias, J., Figueiredo, M.: Total variation restoration of speckled images using a split-Bregman algorithm. In: IEEE International Conference on Image Processing (2010)

  15. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, W., Lei, H., Gao, Y.: Speckle reduction via higher order total variation approach. IEEE Trans. Image Process. 23, 1831–1843 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shama, M., Huang, T., Liu, J., et al.: A convex total generalized variation regularized model for multiplicative noise and blur removal. Appl. Math. Comput. 276, 109–121 (2016)

    MATH  Google Scholar 

  19. Bredies, K., Valkonen, T.: Inverse problems with second-order total generalized variation constraints. In: The 9th International Conference on Sampling Theory and Applications (2011)

  20. Li, H., Wang, J., Dou, H.: Second-order TGV model for Poisson noise image restoration. Springerplus 5(1), 1272 (2016)

    Article  Google Scholar 

  21. Florian, K., Kristian, B., Thomas, P., et al.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Article  Google Scholar 

  22. Bredies, K.: Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. In: Bruhn, A., Pock, T., Tai, X.C. (eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision. Lecture Notes in Computer Science, vol. 8293. Springer, Berlin (2014)

    Chapter  Google Scholar 

  23. Wen, Y., Chan, R., Zeng, T.: Primal-dual algorithms for total variation based image restoration under Poisson noise. Sci. China Math. 59(1), 141–160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bertsekas, D.: Convex Optimization Theory. Athena Scientific Belmont, MA (2009)

    MATH  Google Scholar 

  25. Rockafellar, R.: Augmented lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gong, C., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64(1–3), 81–101 (1994)

    MathSciNet  MATH  Google Scholar 

  27. Combettes, P., Pesquet, J.: A proximal decomposition method for solving convex variational inverse problems. Inverse Probl. 24(6), 065014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Franrois-Xavier, D., Fadili, J., Jean-Luc, S.: A proximal iteration for deconvolving poisson noisy images using sparse representations. IEEE Trans. Image Process. 18(2), 310–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Valkonen, T.: A primal-dual hybrid gradient method for nonlinear operators with applications to MRI. Inverse Probl. 30(5), 900–914 (2013)

    MathSciNet  Google Scholar 

  30. Ono, S.: Primal-dual plug-and-play image restoration. IEEE Signal Process. Lett. 24(8), 1108–1112 (2017)

    Article  Google Scholar 

  31. Wen, Y., Sun, H., Ng, M.: A primal-dual method for the Meyer model of cartoon and texture decomposition. Numer. Linear Algebra. 26(2), 120–145 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehu Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, whether financial or non-financial.

Human participants and animals

This research did not involve human participants and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Y. Total generalized variation denoising of speckled images using a primal-dual algorithm. J. Appl. Math. Comput. 62, 489–509 (2020). https://doi.org/10.1007/s12190-019-01293-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-019-01293-8

Keywords

Navigation