Harmonic coefficients of the Earth’s Spectral Crustal Model 180 – ESCM180 | Earth Science Informatics
Skip to main content

Harmonic coefficients of the Earth’s Spectral Crustal Model 180 – ESCM180

  • Review Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

We compile the harmonic coefficients, which describe the Earth’s crustal density structure with a spectral resolution complete to degree/order 180. These coefficients can be used in gravimetric studies of the Earth’s lithosphere structure, isostasy, crustal loading, sedimentary basins and related topics. The crustal structure of the Earth’s Spectral Crustal Model 180 (ESCM180) is separated into 9 individual layers of the topography, bathymetry, polar ice sheets, sediments (3-layers) and consolidated crust (3-layers). The harmonic coefficients describe uniformly the geometry and density (or density contrast) distribution within each individual crustal component. The topographic and bathymetric coefficients are generated from the topographic/bathymetric model ETOPO1 and the global geoid model GOCO03s. A uniform density model is adopted for the topography. The ocean density distribution is approximated by the depth-dependent seawater density model. The ETOPO1 topographic and the DTM2006.0 ice thickness data are used to generate the ice coefficients, while assuming a uniform density of the glacial ice. The geometry and density distribution within sediments is described by the 3 stratigraphic layers of a laterally varying density model, and the same structure is used to describe the density distribution within the consolidated crust down to the Moho interface. The sediment and consolidated crust coefficients are generated from the global crustal model CRUST1.0. The density contrasts of the ocean, ice, sediments and remaining crustal structures are taken relative to the reference crustal density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA, Technical memorandum, NESDIS, NGDC-24, 19 pp

  • Artemjev ME, Kaban MK, Kucherinenko VA, Demjanov GV, Taranov VA (1994) Subcrustal density inhomogeneities of the Northern Eurasia as derived from the gravity data and isostatic models of the lithosphere. Tectonoph 240:248–280

    Google Scholar 

  • Bruns H (1878) Die Figur der Erde. Publ Preuss Geod Inst, Berlin

    Google Scholar 

  • Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Cowie PA, Karner GD (1990) Gravity effect of sediment compaction: examples from the North Sea and the Rhine Graben. Earth Planet Sci Lett 99:141–153

    Article  Google Scholar 

  • Cutnell JD, Kenneth WJ (1995) Physics, 3rd edn. Wiley, New York

    Google Scholar 

  • Čadek O, Martinec Z (1991) Spherical harmonic expansion of the earth’s crustal thickness up to degree and order 30. Stud Geoph Geodeat 35:151–165

    Article  Google Scholar 

  • Divins DL (2003) Total sediment thickness of the world’s oceans & marginal seas. NOAA National Geophysical Data Center, Boulder

    Google Scholar 

  • Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Plan Int 25:297–356

    Article  Google Scholar 

  • Ekholm S (1996) A full coverage, high-resolution, topographic model of Greenland, computed from a variety of digital elevation data. J Geophys Res B10(21):961–972

    Google Scholar 

  • Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393

    Article  Google Scholar 

  • Garrison T (2001) Essentials of oceanography. Brooks Cole, Pacific Grove

    Google Scholar 

  • van Gelderen M, Koop R (1997) The use of degree variances in satellite gradiometry. J Geod 71:337–343

    Article  Google Scholar 

  • Gladkikh V, Tenzer R (2011) A mathematical model of the global ocean saltwater density distribution. Pur Appl Geoph 169(1–2):249–257

    Google Scholar 

  • Gouretski VV, Koltermann KP (2004) Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, No 35

  • Grad M, Tiira T, Working Group ESC (2009) The Moho depth map of the European Plate. Geophys J Int 176(1):279–292

    Article  Google Scholar 

  • Hamilton EL (1976) Variations of density and porosity with depth in deep-sea sediments. J Sediment Petrol 46:280–300

    Google Scholar 

  • Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560

    Article  Google Scholar 

  • Hirt C, Kuhn M, Featherstone WE, Göttl F (2012) Topographic/isostatic evaluation of new-generation GOCE gravity field models. J Geophys Res 17, B05407

    Google Scholar 

  • Johnson DR, Garcia HE, Boyer TP (2009) World Ocean Database 2009 Tutorial. In: Levitus S (ed) NODC Internal Report 21. NOAA Printing Office, Silver Spring, 18 pp

    Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos ME (2012) CRUST1.0: an updated global model of Earth’s crust. Geophys Res Abs 14, EGU2012-3743-1, EGU General Assembly 2012

  • Lythe MB, Vaughan DG, BEDMAP consortium (2001) BEDMAP; a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res B Solid Earth Planets 106(6):11,335–11,351

    Article  Google Scholar 

  • Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Abstract, GGHS2012, Venice

  • Mooney WD, Laske G, Masters TG (1998) CRUST5.1: A global crustal model at 5° × 5°. J Geophys Res 103B:727–747

    Article  Google Scholar 

  • Moritz H (2000) Geodetic Reference System 1980. J Geod 74:128–162

    Article  Google Scholar 

  • Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geoph Res Lett 37, L20314

    Article  Google Scholar 

  • Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011a) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843

    Article  Google Scholar 

  • Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D, Gruber T (2011b) Combination of GOCE data with complementary gravity field information (GOCO). Proceedings of 4th International GOCE User Workshop, München

  • Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Gravity field of the earth. Kiliçoglu A and Forsberg R (Eds), Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS), Harita Dergisi, Special Issue No. 18, General Command of Mapping, Ankara, Turkey

  • Rodriguez E, Morris CS, Belz JE (2006) A Global Assessment of the SRTM Performance. Photogramm Eng Remote Sens 72(3):249–260

    Article  Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1961

    Article  Google Scholar 

  • Tenzer R, Hamayun, Vajda P (2009) Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J Geophys Res 114, B05408

    Article  Google Scholar 

  • Tenzer R, Abdalla A, Vajda P, Hamayun (2010) The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib Geophys Geodesy 40(3):207–223

    Google Scholar 

  • Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun (2012a) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207

    Article  Google Scholar 

  • Tenzer R, Gladkikh V, Vajda P, Novák P (2012b) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 33(5):817–839

    Article  Google Scholar 

  • Tenzer R, Novák P, Gladkikh V (2012c) The bathymetric stripping corrections to gravity field quantities for a depth-dependant model of the seawater density. Mar Geod 35:198–220

    Article  Google Scholar 

  • Tenzer R, Gladkikh V (2014) Assessment of density variations of marine sediments with ocean and sediment depths. Sci World J. doi:10.1155/2014/823296

  • Timco GW, Frederking RMW (1996) A review of sea ice density. Cold Reg Sci Technol 24(1):1–6

    Article  Google Scholar 

  • Tsoulis D (2004) Spherical harmonic analysis of the CRUST2.0 global crustal model. J Geod 78(1–2):7–11

    Google Scholar 

  • van den Broeke M (2008) Depth and density of the Antarctic firn layer. Arct Antarct Alp Res 40(2):432–438

    Article  Google Scholar 

Download references

Acknowledgments

The Chinese Ministry of Education is cordially acknowledged for a financial support by the project No. 214273812.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Tenzer.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Tenzer, R. Harmonic coefficients of the Earth’s Spectral Crustal Model 180 – ESCM180. Earth Sci Inform 8, 147–159 (2015). https://doi.org/10.1007/s12145-014-0155-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-014-0155-5

Keywords