Abstract
We compile the harmonic coefficients, which describe the Earth’s crustal density structure with a spectral resolution complete to degree/order 180. These coefficients can be used in gravimetric studies of the Earth’s lithosphere structure, isostasy, crustal loading, sedimentary basins and related topics. The crustal structure of the Earth’s Spectral Crustal Model 180 (ESCM180) is separated into 9 individual layers of the topography, bathymetry, polar ice sheets, sediments (3-layers) and consolidated crust (3-layers). The harmonic coefficients describe uniformly the geometry and density (or density contrast) distribution within each individual crustal component. The topographic and bathymetric coefficients are generated from the topographic/bathymetric model ETOPO1 and the global geoid model GOCO03s. A uniform density model is adopted for the topography. The ocean density distribution is approximated by the depth-dependent seawater density model. The ETOPO1 topographic and the DTM2006.0 ice thickness data are used to generate the ice coefficients, while assuming a uniform density of the glacial ice. The geometry and density distribution within sediments is described by the 3 stratigraphic layers of a laterally varying density model, and the same structure is used to describe the density distribution within the consolidated crust down to the Moho interface. The sediment and consolidated crust coefficients are generated from the global crustal model CRUST1.0. The density contrasts of the ocean, ice, sediments and remaining crustal structures are taken relative to the reference crustal density.
Similar content being viewed by others
References
Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, NOAA, Technical memorandum, NESDIS, NGDC-24, 19 pp
Artemjev ME, Kaban MK, Kucherinenko VA, Demjanov GV, Taranov VA (1994) Subcrustal density inhomogeneities of the Northern Eurasia as derived from the gravity data and isostatic models of the lithosphere. Tectonoph 240:248–280
Bruns H (1878) Die Figur der Erde. Publ Preuss Geod Inst, Berlin
Bassin C, Laske G, Masters G (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897
Cowie PA, Karner GD (1990) Gravity effect of sediment compaction: examples from the North Sea and the Rhine Graben. Earth Planet Sci Lett 99:141–153
Cutnell JD, Kenneth WJ (1995) Physics, 3rd edn. Wiley, New York
Čadek O, Martinec Z (1991) Spherical harmonic expansion of the earth’s crustal thickness up to degree and order 30. Stud Geoph Geodeat 35:151–165
Divins DL (2003) Total sediment thickness of the world’s oceans & marginal seas. NOAA National Geophysical Data Center, Boulder
Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Plan Int 25:297–356
Ekholm S (1996) A full coverage, high-resolution, topographic model of Greenland, computed from a variety of digital elevation data. J Geophys Res B10(21):961–972
Fretwell P, Pritchard HD, Vaughan DG, Bamber JL, Barrand NE, Bell R, Bianchi C, Bingham RG, Blankenship DD, Casassa G, Catania G, Callens D, Conway H, Cook AJ, Corr HFJ, Damaske D, Damm V, Ferraccioli F, Forsberg R, Fujita S, Gim Y, Gogineni P, Griggs JA, Hindmarsh RCA, Holmlund P, Holt JW, Jacobel RW, Jenkins A, Jokat W, Jordan T, King EC, Kohler J, Krabill W, Riger-Kusk M, Langley KA, Leitchenkov G, Leuschen C, Luyendyk BP, Matsuoka K, Mouginot J, Nitsche FO, Nogi Y, Nost OA, Popov SV, Rignot E, Rippin DM, Rivera A, Roberts J, Ross N, Siegert MJ, Smith AM, Steinhage D, Studinger M, Sun B, Tinto BK, Welch BC, Wilson D, Young DA, Xiangbin C, Zirizzotti A (2013) Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7:375–393
Garrison T (2001) Essentials of oceanography. Brooks Cole, Pacific Grove
van Gelderen M, Koop R (1997) The use of degree variances in satellite gradiometry. J Geod 71:337–343
Gladkikh V, Tenzer R (2011) A mathematical model of the global ocean saltwater density distribution. Pur Appl Geoph 169(1–2):249–257
Gouretski VV, Koltermann KP (2004) Berichte des Bundesamtes für Seeschifffahrt und Hydrographie, No 35
Grad M, Tiira T, Working Group ESC (2009) The Moho depth map of the European Plate. Geophys J Int 176(1):279–292
Hamilton EL (1976) Variations of density and porosity with depth in deep-sea sediments. J Sediment Petrol 46:280–300
Hinze WJ (2003) Bouguer reduction density, why 2.67? Geophysics 68(5):1559–1560
Hirt C, Kuhn M, Featherstone WE, Göttl F (2012) Topographic/isostatic evaluation of new-generation GOCE gravity field models. J Geophys Res 17, B05407
Johnson DR, Garcia HE, Boyer TP (2009) World Ocean Database 2009 Tutorial. In: Levitus S (ed) NODC Internal Report 21. NOAA Printing Office, Silver Spring, 18 pp
Laske G, Masters G, Ma Z, Pasyanos ME (2012) CRUST1.0: an updated global model of Earth’s crust. Geophys Res Abs 14, EGU2012-3743-1, EGU General Assembly 2012
Lythe MB, Vaughan DG, BEDMAP consortium (2001) BEDMAP; a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res B Solid Earth Planets 106(6):11,335–11,351
Mayer-Guerr T, Rieser D, Höck E, Brockmann JM, Schuh W-D, Krasbutter I, Kusche J, Maier A, Krauss S, Hausleitner W, Baur O, Jäggi A, Meyer U, Prange L, Pail R, Fecher T, Gruber T (2012) The new combined satellite only model GOCO03s. Abstract, GGHS2012, Venice
Mooney WD, Laske G, Masters TG (1998) CRUST5.1: A global crustal model at 5° × 5°. J Geophys Res 103B:727–747
Moritz H (2000) Geodetic Reference System 1980. J Geod 74:128–162
Pail R, Goiginger H, Schuh W-D, Höck E, Brockmann JM, Fecher T, Gruber T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D (2010) Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geoph Res Lett 37, L20314
Pail R, Bruinsma S, Migliaccio F, Förste C, Goiginger H, Schuh W-D, Höck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sansò F, Tscherning CC (2011a) First GOCE gravity field models derived by three different approaches. J Geod 85(11):819–843
Pail R, Goiginger H, Schuh WD, Höck E, Brockmann JM, Fecher T, Mayer-Gürr T, Kusche J, Jäggi A, Rieser D, Gruber T (2011b) Combination of GOCE data with complementary gravity field information (GOCO). Proceedings of 4th International GOCE User Workshop, München
Pavlis NK, Factor JK, Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. In: Gravity field of the earth. Kiliçoglu A and Forsberg R (Eds), Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS), Harita Dergisi, Special Issue No. 18, General Command of Mapping, Ankara, Turkey
Rodriguez E, Morris CS, Belz JE (2006) A Global Assessment of the SRTM Performance. Photogramm Eng Remote Sens 72(3):249–260
Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1961
Tenzer R, Hamayun, Vajda P (2009) Global maps of the CRUST 2.0 crustal components stripped gravity disturbances. J Geophys Res 114, B05408
Tenzer R, Abdalla A, Vajda P, Hamayun (2010) The spherical harmonic representation of the gravitational field quantities generated by the ice density contrast. Contrib Geophys Geodesy 40(3):207–223
Tenzer R, Novák P, Vajda P, Gladkikh V, Hamayun (2012a) Spectral harmonic analysis and synthesis of Earth’s crust gravity field. Comput Geosci 16(1):193–207
Tenzer R, Gladkikh V, Vajda P, Novák P (2012b) Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv Geophys 33(5):817–839
Tenzer R, Novák P, Gladkikh V (2012c) The bathymetric stripping corrections to gravity field quantities for a depth-dependant model of the seawater density. Mar Geod 35:198–220
Tenzer R, Gladkikh V (2014) Assessment of density variations of marine sediments with ocean and sediment depths. Sci World J. doi:10.1155/2014/823296
Timco GW, Frederking RMW (1996) A review of sea ice density. Cold Reg Sci Technol 24(1):1–6
Tsoulis D (2004) Spherical harmonic analysis of the CRUST2.0 global crustal model. J Geod 78(1–2):7–11
van den Broeke M (2008) Depth and density of the Antarctic firn layer. Arct Antarct Alp Res 40(2):432–438
Acknowledgments
The Chinese Ministry of Education is cordially acknowledged for a financial support by the project No. 214273812.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: H. A. Babaie
Rights and permissions
About this article
Cite this article
Chen, W., Tenzer, R. Harmonic coefficients of the Earth’s Spectral Crustal Model 180 – ESCM180. Earth Sci Inform 8, 147–159 (2015). https://doi.org/10.1007/s12145-014-0155-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12145-014-0155-5