Reference-lines steered guide assignment and update for pareto-based many-objective particle swarm optimization | Evolutionary Intelligence Skip to main content
Log in

Reference-lines steered guide assignment and update for pareto-based many-objective particle swarm optimization

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

The reference-lines-framework has been successfully used for developing efficient many-objective evolutionary algorithms. In this paper, the concepts and methodologies of such evolutionary algorithms are adapted in the parlance of multi-objective particle swarm optimization (MOPSO) for addressing the challenges of assigning and updating the global and local guides. The proposed algorithm, which is referred to as RMaOPSO, is developed via five modules using the framework so that a diverse set of guides can be selected to steer the search of MOPSO toward the Pareto-optimal front. The modules include global guide assignment, local and global guide update, line assignment to the guides and swarm, and evolutionary search for global guides. The proposed algorithm is tested on DTLZ and WFG test instances of 3-, 5-, 8-, 10- and 15- objectives. Results obtained from RMaOPSO show its efficacy over six multi-objective evolutionary and MOPSO algorithms from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. NSGA-III code developed by [49] is used, which is available in the public domain.

  2. The codes of SPEA/R, VaEA and MaPSO are provided by the authors.

  3. The source codes of dMOPSO and SMPSO are obtained from the jmetal framework [22].

References

  1. Abualigah L, Yousri D (2021) Advances in sine cosine algorithm: a comprehensive survey. Artif Intell Rev 54:2567–2608. https://doi.org/10.1007/s10462-020-09909-3

    Article  Google Scholar 

  2. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021a) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MATH  Google Scholar 

  3. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA, Gandomi AH (2021b) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250. https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  4. Abualigah LMQ (2019) Feature selection and enhanced Krill Herd algorithm for text document clustering, vol 816, 1st edn. Springer, Berlin

    Book  Google Scholar 

  5. Al Moubayed N, Petrovski A, McCall J (2012) D\(^2\)mopso: multi-objective particle swarm optimizer based on decomposition and dominance. In: Hao JK, Middendorf M (eds) Evolutionary computation in combinatorial optimization. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 75–86

  6. Barakat N, Sharma D (2019) Evolutionary multi-objective optimization for bulldozer and its blade in soil cutting. Int J Manag Sci Eng Manag 14(2):102–112. https://doi.org/10.1080/17509653.2018.1500953

    Article  Google Scholar 

  7. Britto A, Pozo A (2012a) I-mopso: a suitable pso algorithm for many-objective optimization. In: 2012 Brazilian symposium on neural networks, pp 166–171. https://doi.org/10.1109/SBRN.2012.20

  8. Britto A, Pozo A (2012b) Using archiving methods to control convergence and diversity for many-objective problems in particle swarm optimization. In: 2012 IEEE congress on evolutionary computation, pp 1–8. https://doi.org/10.1109/CEC.2012.6256149

  9. Britto A, Pozo A (2014) Using reference points to update the archive of mopso algorithms in many-objective optimization. Neurocomputing 127:78–87. https://doi.org/10.1016/j.neucom.2013.05.049

  10. Castro OR, Santana R, Pozo A (2016) C-multi: a competent multi-swarm approach for many-objective problems. Neurocomputing 180:68–78. https://doi.org/10.1016/j.neucom.2015.06.097

  11. Cheng T, Chen M, Fleming PJ, Yang Z, Gan S (2017) A novel hybrid teaching learning based multi-objective particle swarm optimization. Neurocomputing 222:11–25. https://doi.org/10.1016/j.neucom.2016.10.001

    Article  Google Scholar 

  12. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279. https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  13. Coello Coello CA, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 congress on evolutionary computation, CEC’02 (Cat. No.02TH8600), vol 2, pp 1051–1056. https://doi.org/10.1109/CEC.2002.1004388

  14. Dai C, Wang Y, Ye M (2015) A new multi-objective particle swarm optimization algorithm based on decomposition. Inf Sci 325:541–557. https://doi.org/10.1016/j.ins.2015.07.018

    Article  Google Scholar 

  15. Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657. https://doi.org/10.1137/S1052623496307510

    Article  MATH  Google Scholar 

  16. de Carvalho AB, Pozo A (2012) Measuring the convergence and diversity of cdas multi-objective particle swarm optimization algorithms: a study of many-objective problems. Neurocomputing 75(1):43–51. https://doi.org/10.1016/j.neucom.2011.03.053

  17. Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Complex Syst 9(2):115–148

    MATH  Google Scholar 

  18. Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans Evol Comput 18(4):577–601. https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  19. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  20. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization. In: Abraham A, Jain L, Goldberg R (eds) Evolutionary multiobjective optimization: theoritical advances and applications. Springer, London, pp 105–145

    Chapter  MATH  Google Scholar 

  21. Deb K, Gupta S, Daum D, Branke J, Mall A, Padmanabhan D (2009) Reliability-based optimization using evolutionary algorithms. IEEE Trans Evol Comput 13(5):1054–1074

    Article  Google Scholar 

  22. Durillo JJ, Nebro AJ (2011) jmetal: a java framework for multi-objective optimization. Adv Eng Softw 42:760–771. https://doi.org/10.1016/j.advengsoft.2011.05.014

    Article  Google Scholar 

  23. Figueiredo E, Ludermir T, Bastos-Filho C (2016) Many objective particle swarm optimization. Inf Sci 374:115–134. https://doi.org/10.1016/j.ins.2016.09.026

    Article  Google Scholar 

  24. Han H, Lu W, Zhang L, Qiao J (2018) Adaptive gradient multiobjective particle swarm optimization. IEEE Trans Cybern 48(11):3067–3079. https://doi.org/10.1109/TCYB.2017.2756874

    Article  Google Scholar 

  25. Hirano H, Yoshikawa T (2013) A study on two-step search based on pso to improve convergence and diversity for many-objective optimization problems. In: 2013 IEEE congress on evolutionary computation, pp 1854–1859. https://doi.org/10.1109/CEC.2013.6557785

  26. Hu W, Yen GG (2015) Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system. IEEE Trans Evol Comput 19(1):1–18. https://doi.org/10.1109/TEVC.2013.2296151

    Article  Google Scholar 

  27. Hu W, Yen GG, Luo G (2017) Many-objective particle swarm optimization using two-stage strategy and parallel cell coordinate system. IEEE Trans Cybern 47(6):1446–1459. https://doi.org/10.1109/TCYB.2016.2548239

    Article  Google Scholar 

  28. Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477–506. https://doi.org/10.1109/TEVC.2005.861417

    Article  MATH  Google Scholar 

  29. Jiang S, Yang S (2017) A strength pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Trans Evol Comput 21(3):329–346. https://doi.org/10.1109/TEVC.2016.2592479

    Article  Google Scholar 

  30. Junior O, Britto A, Pozo A (2012) A comparison of methods for leader selection in many-objective problems. In: 2012 IEEE congress on evolutionary computation, pp 1–8. https://doi.org/10.1109/CEC.2012.6256415

  31. Köppen M, Yoshida K (2007) Many-objective particle swarm optimization by gradual leader selection. In: Beliczynski B, Dzielinski A, Iwanowski M, Ribeiro B (eds) Adaptive and natural computing algorithms. Springer Berlin Heidelberg, Berlin, pp 323–331

    Chapter  Google Scholar 

  32. Li L, Wang W, Xu X (2017) Multi-objective particle swarm optimization based on global margin ranking. Inf Sci 375:30–47. https://doi.org/10.1016/j.ins.2016.08.043

    Article  Google Scholar 

  33. Li L, Chang L, Gu T, Sheng W, Wang W (2020) On the norm of dominant difference for many-objective particle swarm optimization. IEEE Trans Cybern 51(4):2055–2067

  34. Lin Q, Li J, Du Z, Chen J, Ming Z (2015) A novel multi-objective particle swarm optimization with multiple search strategies. Eur J Oper Res 247(3):732–744. https://doi.org/10.1016/j.ejor.2015.06.071

    Article  MATH  Google Scholar 

  35. Lin Q, Liu S, Zhu Q, Tang C, Song R, Chen J, Coello CAC, Wong K, Zhang J (2018) Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE Trans Evol Comput 22(1):32–46. https://doi.org/10.1109/TEVC.2016.2631279

    Article  Google Scholar 

  36. Liu X, Zhan Z, Gao Y, Zhang J, Kwong S, Zhang J (2019) Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization. IEEE Trans Evol Comput 23(4):587–602

    Article  Google Scholar 

  37. Luo J, Huang X, Yang Y, Li X, Wang Z, Feng J (2020) A many-objective particle swarm optimizer based on indicator and direction vectors for many-objective optimization. Inf Sci 514:166–202. https://doi.org/10.1016/j.ins.2019.11.047

    Article  MATH  Google Scholar 

  38. Mostaghim S, Schmeck H (2008a) Distance based ranking in many-objective particle swarm optimization. In: Rudolph G, Jansen T, Beume N, Lucas S, Poloni C (eds) Parallel problem solving from nature-PPSN X. Springer Berlin Heidelberg, Berlin, pp 753–762

    Chapter  Google Scholar 

  39. Mostaghim S, Schmeck H (2008b) Distance based ranking in many-objective particle swarm optimization. In: Rudolph G, Jansen T, Beume N, Lucas S, Poloni C (eds) Parallel problem solving from nature-PPSN X. Springer Berlin Heidelberg, Berlin, pp 753–762

    Chapter  Google Scholar 

  40. Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello Coello CA, Luna F, Alba E (2009) Smpso: a new pso-based metaheuristic for multi-objective optimization. In: 2009 IEEE symposium on computational intelligence in multi-criteria decision-making (MCDM), pp 66–73. https://doi.org/10.1109/MCDM.2009.4938830

  41. Padhye N, Branke J, Mostaghim S (2009) Empirical comparison of mopso methods-guide selection and diversity preservation. In: 2009 IEEE congress on evolutionary computation, pp 2516–2523, https://doi.org/10.1109/CEC.2009.4983257

  42. Pan A, Wang L, Guo W, Wu Q (2018) A diversity enhanced multiobjective particle swarm optimization. Inf Sci 436–437:441–465. https://doi.org/10.1016/j.ins.2018.01.038

    Article  MATH  Google Scholar 

  43. Peng W, Zhang Q (2008) A decomposition-based multi-objective particle swarm optimization algorithm for continuous optimization problems. In: 2008 IEEE international conference on granular computing, pp 534–537. https://doi.org/10.1109/GRC.2008.4664724

  44. Purshouse RC, Fleming PJ (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans Evol Comput 11(6):770–784. https://doi.org/10.1109/TEVC.2007.910138

    Article  Google Scholar 

  45. Qin S, Sun C, Zhang G, He X, Tan Y (2020) A modified particle swarm optimization based on decomposition with different ideal points for many-objective optimization problems. Complex Intell Syst. https://doi.org/10.1007/s40747-020-00134-7

    Article  Google Scholar 

  46. Ram L, Sharma D (2017) Evolutionary and gpu computing for topology optimization of structures. Swarm Evol Comput 35:1–13. https://doi.org/10.1016/j.swevo.2016.08.004

    Article  Google Scholar 

  47. Ray T, Tai K, Seow KC (2001) Multiobejctive design optimization by an evolutionary algorithm. Eng Optim 33(4):399–424

    Article  Google Scholar 

  48. Ser JD, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D, Das S, Suganthan PN, Coello CAC, Herrera F (2019) Bio-inspired computation: Where we stand and what’s next. Swarm Evol Comput 48:220–250. https://doi.org/10.1016/j.swevo.2019.04.008

    Article  Google Scholar 

  49. Sharma D, Shukla PK (2019) Line-prioritized environmental selection and normalization scheme for many-objective optimization using reference-lines-based framework. Swarm Evol Comput 51:100592. https://doi.org/10.1016/j.swevo.2019.100592

    Article  Google Scholar 

  50. Sharma D, Deb K, Kishore NN (2011) Domain-specific initial population strategy for compliant mechanisms using customized genetic algorithm. Struct Multidiscip Optim 43(4):541–554

    Article  Google Scholar 

  51. Sharma D, Deb K, Kishore NN (2014) Customized evolutionary optimization procedure for generating minimum weight compliant mechanisms. Eng Optim 46(1):39–60

    Article  Google Scholar 

  52. Sharma D, Basha SZ, Kumar SA (2019) Diversity over dominance approach for many-objective optimization on reference-points-based framework. In: Deb K, Goodman E, Coello Coello CA, Klamroth K, Miettinen K, Mostaghim S, Reed P (eds) Evolutionary multi-criterion optimization. Springer, Cham, pp 278–290

    Chapter  Google Scholar 

  53. Sharma D, Vats S, Saurabh S (2021) Diversity preference-based many-objective particle swarm optimization using reference-lines-based framework. Swarm Evol Comput 65:100910. https://doi.org/10.1016/j.swevo.2021.100910

    Article  Google Scholar 

  54. Sierra MR, Coello Coello CA (2005) Improving pso-based multi-objective optimization using crowding, mutation and epsilon-dominance. In: Coello Coello CA, Hernández Aguirre A, Zitzler E (eds) Evolutionary multi-criterion optimization. Springer Berlin Heidelberg, Berlin, pp 505–519

    Chapter  MATH  Google Scholar 

  55. Wickramasinghe UK, Li X (2009) Using a distance metric to guide pso algorithms for many-objective optimization. In: Proceedings of the 11th annual conference on genetic and evolutionary computation, ACM, New York, NY, USA, GECCO’09, pp 667–674. https://doi.org/10.1145/1569901.1569993

  56. Woolard MM, Fieldsend JE (2013) On the effect of selection and archiving operators in many-objective particle swarm optimisation. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, ACM, New York, NY, USA, GECCO’13, pp 129–136. http://doi.acm.org/10.1145/2463372.2463380

  57. Wu B, Hu W, Hu J, Yen GG (2020) Adaptive multiobjective particle swarm optimization based on evolutionary state estimation. IEEE Trans Cybern 51(7):3738–3751

  58. Xiang Y, Zhou Y, Li M, Chen Z (2017) A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans Evol Comput 21(1):131–152. https://doi.org/10.1109/TEVC.2016.2587808

    Article  Google Scholar 

  59. Xiang Y, Zhou Y, Chen Z, Zhang J (2020) A many-objective particle swarm optimizer with leaders selected from historical solutions by using scalar projections. IEEE Trans Cybern 50(5):2209–2222

    Article  Google Scholar 

  60. Yang W, Chen L, Wang Y, Zhang M (2020) A reference points and intuitionistic fuzzy dominance based particle swarm algorithm for multi/many-objective optimization. Appl Intell 50:1133–1154. https://doi.org/10.1007/s10489-019-01569-3

    Article  Google Scholar 

  61. Yu H, Wang Y, Xiao S (2020) Multi-objective particle swarm optimization based on cooperative hybrid strategy. Appl Intell 50:256–269. https://doi.org/10.1007/s10489-019-01496-3

    Article  Google Scholar 

  62. Zapotecas Martínez S, Coello Coello CA (2011) A multi-objective particle swarm optimizer based on decomposition. In: Proceedings of the 13th annual conference on genetic and evolutionary computation, ACM, New York, NY, USA, GECCO’11, pp 69–76. https://doi.org/10.1145/2001576.2001587

  63. Zhang X, Zheng X, Cheng R, Qiu J, Jin Y (2018) A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf Sci 427:63–76. https://doi.org/10.1016/j.ins.2017.10.037

    Article  Google Scholar 

  64. Zhu Q, Lin Q, Chen W, Wong K, Coello Coello CA, Li J, Chen J, Zhang J (2017) An external archive-guided multiobjective particle swarm optimization algorithm. IEEE Trans Cybern 47(9):2794–2808. https://doi.org/10.1109/TCYB.2017.2710133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Agarwal, D. & Kumar, S. Reference-lines steered guide assignment and update for pareto-based many-objective particle swarm optimization. Evol. Intel. 16, 89–114 (2023). https://doi.org/10.1007/s12065-021-00644-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00644-4

Keywords

Navigation