Prediction of rock mass rating using neural network with an improved rider optimization algorithm | Evolutionary Intelligence
Skip to main content

Prediction of rock mass rating using neural network with an improved rider optimization algorithm

  • Special Issue
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Evaluation of TBM performance is critical for the choice of TBM specifications and tunnel design. In the past decades, the hypothetical schemes depending on the rock fragmentation process and the experimental models up to field surveillance as well as machine performance are the two main methods. Traditional and conventional approaches for rock mass rate (RMR) prediction usually consider excessive parameters and the accuracies are far from actual values. A new RMR prediction model based on the optimized neural network (NN) is designed. To improve the prediction accuracy, this paper proposed a new self-adaptive rider optimization algorithm (SA-ROA), which applied optimization logic to train the NN by updating the weight as wave velocity (Vp), transverse wave velocity (Vs), Vp/Vs, statistics (Stat), orientation, magnitude, polarity, wave type, and metre. Finally, the RMR prediction analysis of the adopted NN-SA-ROA model is compared to the conventional and traditional classifiers with varied learning percentages: 50%, 60%, 70%, and 80% for three data sets, respectively. Subsequently, the performance of the proposed work is verified using other approaches based on error analysis. The predicted mean absolute errors (MAEs) and the mean absolute percentage errors (MAPEs) of SA-ROA are smaller than conventional and traditional schemes. The results show that the proposed method can successfully predict the actual RMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

TBM:

Tunnel boring machines

RMR:

Rock mass rate

DPW:

Distance among planes of weakness

SA-ROA:

Self adaptive rider optimization algorithm

UCS:

Uniaxial compressive strength

BI:

Brittleness index

BTS:

Brazilian tensile strength

ROP:

Rate of penetration

NN:

Neural network

BPNN:

Back propagation neural network

SA:

Simulated annealing

AI:

Artificial intelligence

XOR:

Exclusive OR

SVR:

Support vector regression

SST:

Stacked single-target

DF-HFIS:

Defuzzification-free hierarchical fuzzy inference system

MRA:

Multivariate regression analysis

MAE:

Mean absolute error

MSE:

Mean squared error

MAPE:

Mean absolute percentage error

MSRE:

Mean squared root error

RMSRE:

Relative MSRE

MSPE:

Mean squared percentage error

RMSPE:

Root MSPE

MARE:

Mean absolute relative error

References

  1. Adoko AC, Gokceoglu C, Yagiz S (2017) Bayesian prediction of TBM penetration rate in rock mass. Eng Geol 226:245–256. https://doi.org/10.1016/j.enggeo.2017.06.014

    Article  Google Scholar 

  2. Esmailzadeh A, Mikaeil R, Shafei E, Sadegheslam G (2018) Prediction of rock mass rating using TSP method and statistical analysis in Semnan Rooziyeh spring conveyance tunnel. Tunn Undergr Space Technol 79:224–230. https://doi.org/10.1016/j.tust.2018.05.001

    Article  Google Scholar 

  3. Liu B, Wang R, Zhao G, Guo X, Wang Y, Li J, Wang S (2020) Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2019.103103

    Article  Google Scholar 

  4. Zhao Y, Liu Q, Tong G, Tang J, Xie S (2019) Deformation and energy dissipation characteristics of joints under cyclic confinements. Geotech Geol Eng 37(6):5315–5325. https://doi.org/10.1007/s10706-019-00981-3

    Article  Google Scholar 

  5. Wu Q, Weng L, Zhao Y, Guo B, Luo T (2019) On the tensile mechanical characteristics of fine-grained granite after heating/cooling treatments with different cooling rates. Eng Geol 253:94–110. https://doi.org/10.1016/j.enggeo.2019.03.014

    Article  Google Scholar 

  6. Liu B, Wang R, Guan Z, Li J, Xu Z, Guo X, Wang Y (2019) Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2019.04.014

    Article  Google Scholar 

  7. Mutlu B, Sezer EA, Nefeslioglu HA (2017) A defuzzification-free hierarchical fuzzy system (DF-HFS): rock mass rating prediction. Fuzzy Sets Syst 307:50–66. https://doi.org/10.1016/j.fss.2016.01.001

    Article  MathSciNet  Google Scholar 

  8. Chen W, Wan W, Zhao Y, Xie S, Jiao B, Dong Z, Wang X, Lian S (2020) Aging features and strength model of diorite’s damage considering acidization. Front Phys. https://doi.org/10.3389/fphy.2020.553643

    Article  Google Scholar 

  9. Liu X, Han G, Wang E, Wang S, Nawnit K (2018) Multiscale hierarchical analysis of rock mass and prediction of its mechanical and hydraulic properties. J Rock Mech Geotech Eng 10(4):694–702. https://doi.org/10.1016/j.jrmge.2018.04.003

    Article  Google Scholar 

  10. Nikafshan Rad H, Jalali Z, Jalalifar H (2015) Prediction of rock mass rating system based on continuous functions using Chaos–ANFIS model. Int J Rock Mech Min Sci 73:1–9. https://doi.org/10.1016/j.ijrmms.2014.10.004

    Article  Google Scholar 

  11. Salimi A, Rostami J, Moormann C (2019) Application of rock mass classification systems for performance estimation of rock TBMs using regression tree and artificial intelligence algorithms. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2019.103046

    Article  Google Scholar 

  12. Ataei M, KaKaie R, Ghavidel M, Saeidi O (2015) Drilling rate prediction of an open pit mine using the rock mass drillability index. Int J Rock Mech Min Sci 73:130–138. https://doi.org/10.1016/j.ijrmms.2014.08.006

    Article  Google Scholar 

  13. Zhao Y, Gong Q, Tian Z, Zhou S, Jiang H (2019) Torque fluctuation analysis and penetration prediction of EPB TBM in rock–soil interface mixed ground. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2019.103002

    Article  Google Scholar 

  14. Gan C, Cao W, Wu M, Chen X, Hu Y, Liu K, Wang F, Zhang S (2019) Prediction of drilling rate of penetration (ROP) using hybrid support vector regression: a case study on the Shennongjia area, Central China. J Petrol Sci Eng. https://doi.org/10.1016/j.petrol.2019.106200

    Article  Google Scholar 

  15. Wu Q, Chen L, Shen B, Dlamini B, Zhu Y (2019) Experimental investigation on rockbolt performance under the tension load. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-019-01845-1

    Article  Google Scholar 

  16. Wu S, Wu Z, Zhang C (2019) Rock burst prediction probability model based on case analysis. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2019.103069

    Article  Google Scholar 

  17. Shi S, Zhao R, Li S, Xie X, Li L, Zhou Z, Liu H (2019) Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application. Tunn Undergr Space Technol 90:1–11. https://doi.org/10.1016/j.tust.2019.04.013

    Article  Google Scholar 

  18. Liu J, Jiang G (2021) Use of laboratory indentation tests to study the surface crack propagation caused by various indenters. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2020.107421

    Article  Google Scholar 

  19. Armetti G, Migliazza MR, Ferrari F, Berti A, Padovese P (2018) Geological and mechanical rock mass conditions for TBM performance prediction. The case of “La Maddalena” exploratory tunnel, Chiomonte (Italy). Tunn Undergr Space Technol 77:115–126. https://doi.org/10.1016/j.tust.2018.02.012

    Article  Google Scholar 

  20. Fattahi H, Varmazyari Z, Babanouri N (2019) Feasibility of Monte Carlo simulation for predicting deformation modulus of rock mass. Tunn Undergr Space Technol 89:151–156. https://doi.org/10.1016/j.tust.2019.03.024

    Article  Google Scholar 

  21. Chen W, Wan W, Zhao Y, Peng W (2020) Experimental study of the crack predominance of rock-like material containing parallel double fissures under uniaxial compression. Sustainability 12(12):5188

    Article  Google Scholar 

  22. Entacher M, Rostami J (2019) TBM performance prediction model with a linear base function and adjustment factors obtained from rock cutting and indentation tests. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2019.103085

    Article  Google Scholar 

  23. Inanloo Arabi Shad H, Sereshki F, Ataei M, Karamoozian M (2018) Prediction of rotary drilling penetration rate in iron ore oxides using rock engineering system. Int J Min Sci Technol 28(3):407–413. https://doi.org/10.1016/j.ijmst.2018.04.004

    Article  Google Scholar 

  24. Öge İF (2018) Determination of deformation modulus in a weak rock mass by using menard pressuremeter. Int J Rock Mech Min Sci 112:238–252. https://doi.org/10.1016/j.ijrmms.2018.10.009

    Article  Google Scholar 

  25. Salimi A, Rostami J, Moormann C (2017) Evaluating the suitability of existing rock mass classification systems for tbm performance prediction by using a regression tree. Procedia Eng 191:299–309. https://doi.org/10.1016/j.proeng.2017.05.185

    Article  Google Scholar 

  26. Sun Z, Zhao H, Hong K, Chen K, Zhou J et al (2019) A practical TBM cutter wear prediction model for disc cutter life and rock wear ability. Tunn Undergr Space Technol 85:92–99. https://doi.org/10.1016/j.tust.2018.12.010

    Article  Google Scholar 

  27. Liu J, Wang J, Wan W (2018) Numerical study of crack propagation in an indented rock specimen. Comput Geotech 96:1–11. https://doi.org/10.1016/j.compgeo.2017.10.014

    Article  Google Scholar 

  28. Bilgin N, Balci C, Aslanbas A (2021) Case studies leading to the management of tunnel fire risks during TBM drives in an old coalfield. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2021.103902

    Article  Google Scholar 

  29. Miao Y, Li X, Kong L, Wu D, Chen X, Sun J (2021) Study on the symmetric bilinear initiating technique of deep-hole boulder blasting in the TBM tunnel excavation. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2021.103871

    Article  Google Scholar 

  30. Jing W, Zhao Y, Kong J, Huang C, Jilani KMK, Li H (2018) The time-space prediction model of surface settlement for above underground gas storage cavern in salt rock based on Gaussian function. J Nat Gas Sci Eng 53:45–54. https://doi.org/10.1016/j.jngse.2018.02.024

    Article  Google Scholar 

  31. Majdi A, Beiki M (2019) Applying evolutionary optimization algorithms for improving fuzzy C-mean clustering performance to predict the deformation modulus of rock mass. Int J Rock Mech Min Sci 113:172–182. https://doi.org/10.1016/j.ijrmms.2018.10.030

    Article  Google Scholar 

  32. Wu Q, Li X, Weng L, Li Q, Zhu Y, Luo R (2019) Experimental investigation of the dynamic response of prestressed rockbolt by using an SHPB-based rockbolt test system. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2019.103088

    Article  Google Scholar 

  33. Cui L, Dong YK, Sheng Q, Shen Q (2019) New numerical procedures for fully-grouted bolt in the rock mass with slip and non-slip cases at the rock-bolt interface. Constr Build Mater 204:849–863. https://doi.org/10.1016/j.conbuildmat.2019.01.219

    Article  Google Scholar 

  34. Ma L, Huang C, Liu Z-S, Morin KA, Aziz M, Meints C (2019) Prediction of acid rock drainage in waste rock piles Part 1: water film model for geochemical reactions and application to a full-scale case study. J Contam Hydrol 220:98–107. https://doi.org/10.1016/j.jconhyd.2018.11.012

    Article  Google Scholar 

  35. Macias FJ, Jakobsen PD, Seo Y, Bruland A (2014) Influence of rock mass fracturing on the net penetration rates of hard rock TBMs. Tunn Undergr Space Technol 44:108–120. https://doi.org/10.1016/j.tust.2014.07.009

    Article  Google Scholar 

  36. Wu Q, Weng L, Zhao Y, Zhao F, Peng W, Zhang S (2020) Deformation and cracking characteristics of ring-shaped granite with inclusion under diametrical compression. Arabian J Geosci 13(14):681. https://doi.org/10.1007/s12517-020-05718-8

    Article  Google Scholar 

  37. Jing L, Li J, Zhang N, Chen S, Yang C, Cao H (2021) A TBM advance rate prediction method considering the effects of operating factors. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2020.103620

    Article  Google Scholar 

  38. Xu ZH, Wang WY, Lin P, Nie LC, Wu J, Li ZM (2021) Hard-rock TBM jamming subject to adverse geological conditions: Influencing factor, hazard mode and a case study of Gaoligongshan Tunnel. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2020.103683

    Article  Google Scholar 

  39. Yogeswaran M, Chee S, Xin D, Lee PF (2016) Artificial neural network for classification of depressive and normal in EEG. https://https://doi.org/10.1109/IECBES.2016.7843459

  40. Binu D, Kariyappa BS (2019) RideNN: A new rider optimization algorithm-based neural network for fault diagnosis in analog circuits. IEEE Trans Instrum Meas 68(1):2–26. https://doi.org/10.1109/TIM.2018.2836058

    Article  Google Scholar 

  41. Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank-k projections for bilinear analysis. IEEE Trans Neural Netw Learn Syst 27(7):1502–1513. https://doi.org/10.1109/TNNLS.2015.2441735

    Article  MathSciNet  Google Scholar 

  42. Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-Level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197. https://doi.org/10.1109/TCYB.2016.2539546

    Article  Google Scholar 

  43. Wang H, Li Z, Li Y, Gupta BB, Choi C (2020) Visual saliency guided complex image retrieval. Pattern Recogn Lett 130:64–72. https://doi.org/10.1016/j.patrec.2018.08.010

    Article  Google Scholar 

  44. Gupta BB, Quamara M (2020) An overview of Internet of Things (IoT): Architectural aspects, challenges, and protocols. Concurr Comput Pract Exp. https://doi.org/10.1002/cpe.4946

    Article  Google Scholar 

  45. Zain AM, Haron H, Sharif S (2011) Estimation of the minimum machining performance in the abrasive waterjet machining using integrated ANN-SA. Expert Syst Appl 38(7):8316–8326. https://doi.org/10.1016/j.eswa.2011.01.019

    Article  Google Scholar 

  46. Feng X, Jimenez R, Zeng P, Senent S (2019) Prediction of time-dependent tunnel convergences using a Bayesian updating approach. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2019.103118

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor and the anonymous reviewers for their very helpful and inspiring comments. This research was supported by the National Natural Science Foundation of China (No. 51774132, 51774131, 51974118) and the Natural Science Foundation of Hunan Province (Grants Nos. 2020JJ5188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Conflict of interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Wan, W. & Peng, W. Prediction of rock mass rating using neural network with an improved rider optimization algorithm. Evol. Intel. 15, 2567–2579 (2022). https://doi.org/10.1007/s12065-021-00606-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00606-w

Keywords