Polymer phosphorylases: clues to the emergence of non-replicative and replicative polymers | Theory in Biosciences Skip to main content
Log in

Polymer phosphorylases: clues to the emergence of non-replicative and replicative polymers

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Polymer formation is arguably one of the essential factors that allowed the emergence, stabilisation and spread of life on Earth. Consequently, studies concerning biopolymers could shed light on the origins of life itself. Of particular interest are RNA and polysaccharide polymers, the archetypes of the contrasting proposed evolutionary scenarios and their respective polymerases. Nucleic acid polymerases were hypothesised, before their discovery, to have a functional similarity with glycogen phosphorylase. Further identification and characterisation of nucleic acid polymerases; particularly of polynucleotide phosphorylase (PNPase), provided experimental evidence for the initial premise. Once discovered, frequent similarities were found between PNPase and glycogen phosphorylase, in terms of catalytic features and biochemical properties. As a result, PNPase was seen as a model of primitive polymerase and used in laboratory precellular systems. Paradoxically, however, these similarities were not sufficient as an argument in favour of an ancestral common polymerisation mechanism prior to polysaccharides and polyribonucleotides. Here we present an overview of the common features shared by polymer phosphorylases, with new proposals for the emergence of polysaccharide and RNA polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • al-Giery AG, Brewer JM (1992) Characterisation of the interaction of yeast enolase with polynucleotides. Biochim Biophys Acta 1159:134–140

    Article  PubMed  CAS  Google Scholar 

  • Anantharaman V, Koonin EV, Aravind L (2002) Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res 30:1427–1464

    Article  PubMed  CAS  Google Scholar 

  • Aon MA, Curtino J (1984) Evidence for the glycoprotein nature of retina glycogen. Eur J Biochem 140:557–566

    Article  PubMed  CAS  Google Scholar 

  • Bailey JM, French D (1957) The significance of multiple reactions in enzyme-polymer systems. J Biol Chem 226:1–14

    PubMed  CAS  Google Scholar 

  • Baranowski T, Illingworth B, Brown DH, Cori CF (1957) The isolation of pyridoxal-5-phosphate from crystalline muscle phosphorylase. Biochim Biophys Acta 25:16–21

    Article  PubMed  CAS  Google Scholar 

  • Beljanski M (1996) De Novo Synthesis of DNA-Like Molecules by PolynucleotidePhosphorylase in vitro. J Mol Evol 42:493–499

    Article  PubMed  CAS  Google Scholar 

  • Blum E, Py B, Carpousis AJ, Higgins CF (1997) Polyphosphate kinase is a component of the Escherichia coli RNA degradosome. Mol Microbiol 26:387–398

    Article  PubMed  CAS  Google Scholar 

  • Brown MR, Kornberg A (2004) Inorganic polyphosphate in the origin and survival of species. Proc Natl Acad Sci USA 101:16085–16087

    Article  PubMed  CAS  Google Scholar 

  • Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM (2004) Crystal structure of glycogen synthase: homologous enzymes catalyse glycogen synthesis and degradation. EMBO J 23:3196–3205

    Article  PubMed  CAS  Google Scholar 

  • Bycroft M, Hubbard TJ, Proctor M, Freund SM, Murzin AG (1997) The solution structure of the S1 RNA binding domain: a member of an ancient nucleic acid-binding fold. Cell 88:235–242

    Article  PubMed  CAS  Google Scholar 

  • Chao J, Johnson GF, Graves DJ (1969) Kinetic mechanism of maltodextrin phosphorylase. Biochemistry 8:1459–1466

    Article  PubMed  CAS  Google Scholar 

  • Chou JY, Singer MF, McPhie P (1975) Kinetic studies on the phosphorololysis of polynucleotides by polynucleotide phosphorylase. J Biol Chem 250:508–514

    PubMed  CAS  Google Scholar 

  • Cohn M (1961) Phosphorylases (Survey). In: Boyer PD, Lardy H, Myrback K (eds) The enzymes, vol V. Academic Press, New York

  • Copley SD, Smith E, Morowitz HJ (2007) The origin of the RNA world: co-evolution of genes and metabolism. Bioorg Chem 35:430–443

    Article  PubMed  CAS  Google Scholar 

  • Cori GT, Cori CF (1939) The activating effect of glycogen on the enzymatic synthesis of glycogen from glucose-1-phosphate. J Biol Chem 131:397–398

    CAS  Google Scholar 

  • Danchin A (2009) A phylogenetic view of bacterial ribonucleases. Progr Mol Biol Transl Sci 85:1–41

    Article  CAS  Google Scholar 

  • de Duve C (1995) The beginnings of life on Earth. Am Sci 83:428–437

    Google Scholar 

  • Delaye L, Becerra A, Lazcano A (2005) The last common ancestor: what’s in a name? Orig Life Evol Biosph 35:537–554

    Article  PubMed  CAS  Google Scholar 

  • Gibbons BJ, Roach PJ, Hurley T (2002) Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin. J Mol Biol 319:463–477

    Article  PubMed  CAS  Google Scholar 

  • Godefroy-Colburn T, Grunberg-Manago M (1972) Polynucleotide phosphorylase. In: Boyer PD, Lardy H, Myrback K (eds) The Enzymes, vol VII. Academic Press, New York

  • Graves DJ, Wang JH (1972) α-Glucan phosphorylases-chemical and physical basis of catalysis and regulation. In: Boyer PD (ed) The enzymes, vol VII. Academic Press, New York

  • Grunberg-Manago M, Ochoa S (1955) Enzymatic synthesis and breakdown of polynucleotides: polynucleotide phosphorylase. JACS 77:3165–3166

    Article  CAS  Google Scholar 

  • Grunberg-Manago M, Ortiz PJ, Ochoa S (1956) Enzymic synthesis of polynucleotides. I. Polynucleotide phosphorylase of Azotobacter vinelandii. Biochim Biophys Acta 20:269–285

    Article  PubMed  CAS  Google Scholar 

  • Jadhav VR, Yarus M (2002) Coenzymes as coribozymes. Biochimie 84:877–888

    Article  PubMed  CAS  Google Scholar 

  • Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221

    Article  PubMed  CAS  Google Scholar 

  • Kainuma K, French D (1972) Nageli amylodextrin and its relationship to starch granule structure. II. Role of water in crystallization of B-starch. Biopolymers 11:2241–2250

    Article  CAS  Google Scholar 

  • Kim ΚΜ, Caetano-Anollés G (2010) Emergence and evolution of modern molecular functions inferred from phylogenomic analysis and ontological data. Mol Biol Evol 27:1710–1733

    Article  PubMed  CAS  Google Scholar 

  • Kitamura T, Peyrard M, Cuesta Lopez S (2005) A model on the origin of RNA. Phys Biol 2:200–206

    Article  PubMed  CAS  Google Scholar 

  • Kornberg A (2001) Remembering our teachers. J Biol Chem 276:3–11

    PubMed  CAS  Google Scholar 

  • Kornberg A, Lehman IR, Bessman MJ, Simms ES (1956) Enzymic synthesis of deoxyribonucleic acid. Biochim Biophys Acta 21:197–198

    Article  PubMed  CAS  Google Scholar 

  • Kuhnel K, Luisi BF (2001) Crystal structure of the Escherichia coli RNA degradosome component enolase. J Mol Biol 313:583–592

    Article  PubMed  CAS  Google Scholar 

  • Lazcano A, Llaca V, Capello R, Valverde V, Oro J (1992) The origin and early evolution of nucleic acid polymerases. Adv Space Res 12:207–216

    Article  PubMed  CAS  Google Scholar 

  • Leloir LF (1983) Far away and long ago. Annu Rev Biochem 52:1–15

    Article  PubMed  CAS  Google Scholar 

  • Lomako J, Lomako WM, Whelan WJ, Marchase RB (1993) Glycogen contains phosphodiester groups that can be introduced by UDPglucose: glycogen glucose 1-phosphotransferase. FEBS Lett 329:263–267

    Article  PubMed  CAS  Google Scholar 

  • Lomako J, Lomako WM, Whelan WJ (2004) Glycogenin: the primer for mammalian and yeast glycogen synthesis. Biochim Biophys Acta 1673:45–55

    Article  PubMed  CAS  Google Scholar 

  • Mamaeva OK, Karpeiskii MI, Karpeiskii AM, Bibilashvili RSh (1979) Interaction of oligophosphates of pyridoxal with certain enzymes of polynucleotide synthesis. Mol Biol (Mosk) 13:811–821

    CAS  Google Scholar 

  • Martin G, Keller W (2007) RNA-specific ribonucleotidyl transferases. RNA 13:1834–1849

    Article  PubMed  CAS  Google Scholar 

  • Metzler DE (2001) Biochemistry: the chemical reactions of living cells, 2nd edn. Academic Press, New York

    Google Scholar 

  • Mii S, Ochoa S (1957) Polyribonucleotide synthesis with highly purified polynucleotide phosphorylase. Biochim Biophys Acta 26:445–446

    Article  PubMed  CAS  Google Scholar 

  • Monhanty BK, Kuhsner KS (2000) Polynucleotide phosphorylase functions both as 3′ right-arrow 5′ exonuclease and a polymerase (A) in Escherichia coli. Proc Natl Acad Sci USA 97:11966–11971

    Article  Google Scholar 

  • Murzin AG (1993) OB (oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12:861–867

    PubMed  CAS  Google Scholar 

  • Nagai K, Oubridge C, Jessen TH, Li J, Evans PR (1990) Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature 348:515–520

    Article  PubMed  CAS  Google Scholar 

  • Oberholzer T, Luisi PL (2002) The use of liposomes for constructing cell models. J Biol Phys 28:733–744

    Article  CAS  Google Scholar 

  • Oparin AI, Evreinova TN, Larionova TI, Davydova IM (1962) Synthesis and degradation of starch in coacervates droplets. Dokl Akad Nauk SSSR 143:980–983

    CAS  Google Scholar 

  • Oparin AI, Serebroskaya KB, Pantskva SN, Vasileva NV (1963) Enzymatic synthesis of polyadenylic acid in coacervates drops. Biokhimiia 28:671–675

    PubMed  CAS  Google Scholar 

  • Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  PubMed  CAS  Google Scholar 

  • Palm D, Klein HW, Schinzel R, Buehner M, Helmreich EG (1990) The role of pyridoxal 5′-phosphate in glycogen phosphorylase catalysis. Biochem 29:1099–1107

    Article  CAS  Google Scholar 

  • Rauhut R, Klug G (1999) mRNA degradation in bacteria. FEMS Microbiol Rev 23:353–370

    Article  PubMed  CAS  Google Scholar 

  • Saladino R, Crestini C, Ciambecchini U, Ciciriello F, Costanzo G, Di Mauro E (2004) Synthesis and degradation of nucleobases and nucleic acids by formamide in the presence of montmorillonites. Chembiochem 5:1558–1566

    Article  PubMed  CAS  Google Scholar 

  • Sanchez RA, Orgel LE (1970) Studies in prebiotic synthesis.V. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol 47:531–543

    Article  PubMed  CAS  Google Scholar 

  • Schwartz AW, Orgel LE (1985) Template-directed synthesis of novel, nucleic acid-like structures. Science 228:585–587

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER (1973) Adenylyl transfer reactions. In: Boyer PD (ed) The enzymes, vol VIII. Academic Press, New York

  • Steitz TA (1998) A mechanism for all polymerases. Nature 391:231–232

    Article  PubMed  CAS  Google Scholar 

  • Stern R, Jedrzejas MJ (2008) Carbohydrates polymers at the center of life’s origin: the importance of molecular processivity. Chem Rev 108:5061–5085

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Pertzev A, Nicholson AW (2005) Catalytic mechanism of Escherichia coli ribonuclease III: kinetic and inhibitor evidence for the involvement of two magnesium ions in RNA phosphodiester hydrolysis. Nucleic Acids Res 33:807–815

    Article  PubMed  CAS  Google Scholar 

  • Symmons MF, Jones GH, Luisi BF (2000) A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8:1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Tolstoguzov V (2004) Why were polysaccharides necessary? Orig Life Evol Biosph 34:571–597

    Article  PubMed  CAS  Google Scholar 

  • Ugalde JE, Parodi AJ, Ugalde RA (2003) De novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proc Natl Acad Sci USA 100:10659–10663

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953a) Molecular structure of nucleic acids. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Crick FHC (1953b) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    Article  PubMed  CAS  Google Scholar 

  • Weber AL (2005) Growth of organic microspherules in sugar-ammonia reactions. Orig Life Evol Biosph 35:523–536

    Article  PubMed  Google Scholar 

  • Yehudai-Resheff S, Hirsh M, Schuster G (2001) Polynucleotide phosphorylase functions as both an exonuclease and a poly(A) polymerase in spinach chloroplasts. Mol Cell Biol 21:5408–5416

    Article  PubMed  CAS  Google Scholar 

  • Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017–1026

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Ms. E. Vega for editing the manuscript, Dr. S. Burgess for revision and correction of the text, and CONICET for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Freire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freire, M.A. Polymer phosphorylases: clues to the emergence of non-replicative and replicative polymers. Theory Biosci. 130, 279–287 (2011). https://doi.org/10.1007/s12064-011-0131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-011-0131-2

Keywords

Navigation