Walter Garstang: a retrospective | Theory in Biosciences Skip to main content
Log in

Walter Garstang: a retrospective

  • Review
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Although, Walter Garstang died over 60 years ago, his work is still cited—sometimes praised, but sometimes belittled. On the negative side, he often appropriated ideas of others without attribution, ignored earlier studies conflicting with his theories, and clung to notions like inheritance of acquired characters, progressive evolution, and saltation after many of his contemporaries were advancing toward the modern synthesis. Moreover, his evolutionary scenarios—especially his derivation of vertebrates from a sessile ascidian—have not been well supported by recent work in developmental genetics and molecular phylogenetics. On the positive side, Garstang firmly established several points of view that remain useful in the age of evolutionary development (evo-devo). He popularized the valid idea that adaptive changes in larvae combined with shifts in developmental timing (heterochrony) could radically change adult morphology and provide an escape from overspecialization. Moreover, his re-statement of the biogenetic law is now widely accepted: namely, that recapitulation results when characters at one stage of development are required for the correct formation of other characters at subsequent stages (his stepping stone model). In other words, ontogeny creates phylogeny because some developmental features are constraints, favoring particular evolutionary outcomes while excluding others. This viewpoint is a useful basis for advancing concepts of homology and for comparing the phylogeny of ontogenies across a series of animals to ascertain the timing and the nature of the underlying ontogenetic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akasaka K, Shimada H (2001) Body plan of sea urchin embryo: an ancestral type animal. Zool Sci 18:757–770

    Article  CAS  Google Scholar 

  • Baker RA, Bayliss RA (1984) Walter Garstang (1868–1949): zoological pioneer and poet. Naturalist 109:41–53

    Google Scholar 

  • Balfour FM (1875) A comparison of the early stages in the development of vertebrates. Quart J Microsc Sci 15:207–226

    Google Scholar 

  • Bates O (1984) The Fashoda incident of 1898: encounter on the Nile. Oxford University Press, Oxford

    Google Scholar 

  • Bateson W (1894) Materials for the study of variation treated with especial regard to discontinuity in the origin of species. Macmillan, London

    Book  Google Scholar 

  • Berrill NJ (1955) The origin of vertebrates. Clarendon Press, Oxford

    Google Scholar 

  • Bone Q (1992) On the locomotion of ascidian tadpole larvae. J Mar Biol Assoc U K 72:161–186

    Article  Google Scholar 

  • Bone Q, Braconnot JC, Carre C, Ryan KP (1997) On the filter-feeding of Doliolum (Tunicata: Thaliacea). J Exp Mar Biol Ecol 214:179–193

    Article  Google Scholar 

  • Bonner JT (1982) Introduction. In: Bonner JT (ed) Dahlem workshop on evolution and development. Springer, Berlin, pp 1–16

    Google Scholar 

  • Bonner JT (1988) The evolution of complexity by means of natural selection. Princeton University Press, Princeton

    Google Scholar 

  • Brooks WK (1893) The genus Salpa. Mem Biol Lab Johns Hopkins Univ. 2, 1–303 (pls I–XLVI)

  • Bulmer M (1999) The development of Francis Galton’s ideas on the mechanism of heredity. J Hist Biol 32:263–292

    Article  PubMed  CAS  Google Scholar 

  • Churchill FB (2007) Living with the biogenetic law: a reappraisal. In: Laubichler MD, Maienschein J (eds) From embryology to evo-devo. MIT Press, Cambridge, pp 37–81

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 1st edn. John Murray, London

    Google Scholar 

  • de Beer G (1958) Embryos and ancestors, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

  • Delsuc F, Tsagkogeorga G, Latrillot N, Philippe H (2008) Additional molecular support for the new chordate phylogeny. Genesis 46:592–604

    Article  PubMed  Google Scholar 

  • Di Gregorio MA (2005) From here to eternity: Ernst Haeckel and scientific faith. Vandenhoeck and Ruprecht, Göttingen

    Google Scholar 

  • Fedele M (1921) Sulla nutrizione degli animali pelagici: ricerche sui Doliolidae. Mem Reg Com Talass Ital Venezia 78:1–26

    Google Scholar 

  • Garstang W (1894a) On some modifications of the tunicate pharynx induced by the violent ejection of water. J Oxf Univ Jr Sci Club (Nov) 267–269

  • Garstang W (1894b) Preliminary note on a new theory of the phylogeny of the Chordata. Zool Anz 17:122–125

    Google Scholar 

  • Garstang W (1896) The origin of vertebrates. Proc Camb Phil Soc 9:19–47 [This reference, which has found its way into the Web of Science, is mostly correct—except it was written by Walter Gaskell, not Walter Garstang.]

  • Garstang W (1919) The return to Oxford: a memorial lay. Blackwell, Oxford

    Google Scholar 

  • Garstang W (1922) The theory of recapitulation: a critical re-statement of the biogenetic law. J Linn Soc Lond 35:81–101

    Article  Google Scholar 

  • Garstang W (1928) The morphology of the Tunicata, and its bearings on the phylogeny of the Chordata. Quart J Microsc Sci 72:51–187 [A variant of this reference also appears in the Web of Science partially degraded to Quart J Exp Biol 5:112–134]

  • Garstang W (1929) The origin and evolution of larval forms. Rep Br Assoc Adv Sci (Sect D) 96:77–89

    Google Scholar 

  • Garstang W (1958) Amphioxus a cephalaspid paedomorph. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process, 2nd edn. Allen and Unwin, London, pp 140–142

    Google Scholar 

  • Garstang SL, Garstang W (1926) On the development of Botrylloides and the ancestry of the vertebrates. Proc Leeds Phil Lit Soc (Sci Sect) 1:81–86

    Google Scholar 

  • Gee H (1989) Four legs to stand on. Nature 342:738–739

    Article  PubMed  CAS  Google Scholar 

  • Gee H (1996) Before the backbone: views on the origin of the vertebrates. Chapman and Hall, London

    Google Scholar 

  • Gee H (2007) This worm is not for turning. Nature 445:33–34

    Article  PubMed  CAS  Google Scholar 

  • Gerber S, Hopkins MJ (2011) Mosaic heterochrony and evolutionary modularity: the trilobite genus Zacanthopsis as a case study. Evolution 65. doi:10.1111/j.1558-5646.2011.01363.x

  • Gliboff S (2008) H.G. Bronn, Ernst Haeckel, and the origins of German Darwinism. Massachusetts Institute of Technology Press, Cambridge

    Google Scholar 

  • Godeaux J, Bone Q, Braconnot JC (1998) Anatomy of Thaliacea. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, New York, pp 1–24

    Google Scholar 

  • Goldschmidt RB (1940) The material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Belknap Press, Cambridge

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Belknap Press, Cambridge

    Google Scholar 

  • Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc Royal Soc Lond B 205:581–598

    Article  CAS  Google Scholar 

  • Govindarajan AE, Bucklin A, Madin LP (2011) A molecular phylogeny of the Thaliacea. J Plank Res 33:843–853

    Article  CAS  Google Scholar 

  • Gregory WK (1935) On the evolution of the skulls of vertebrates with special reference to heritable changes in proportional diameters (anisomerism). Proc Natl Acad Sci USA 21:1–8

    Article  PubMed  CAS  Google Scholar 

  • Haag ES (2005) Echinoderm rudiments, rudimentary bilaterians, and the origin of the chordate CNS. Evol Dev 7:280–281

    Article  PubMed  Google Scholar 

  • Hadzi J (1963) The evolution of the metazoa. Pergamon Press, Oxford

    Google Scholar 

  • Hall BK (2000) Balfour, Garstang and de Beer: the first century of evolutionary embryology. Am Zool 40:718–728

    Article  Google Scholar 

  • Hardy A (1951) Introduction. Larval forms with other zoological verses [of Walter Garstang], 1st edn. Blackwell, Oxford

    Google Scholar 

  • Hardy A (1958) Escape from specialization. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process, 2nd edn. Allen and Unwin, London, pp 122–142

    Google Scholar 

  • Hart MW (1991) Particle captures and the method of suspension feeding by echinoderm larvae. Biol Bull 180:12–27

    Article  Google Scholar 

  • Harvey LA (1961) New speculations on the origin of the chordates. Sci Prog 49:507–514

    Google Scholar 

  • Hennig W (1983) Stammesgeschichte der Chordaten. Paul Parey, Hamburg

    Google Scholar 

  • Holland LZ, Gorsky G, Fenaux R (1988) Fertilization in Oikopleura dioica (Tunicata, Appendicularia): acrosome reaction, cortical reaction and sperm-egg fusion. Zoomorphology 108:229–243

    Article  Google Scholar 

  • Horder TJ (2008) A history of evo-devo in Britain: theoretical ideals confront biological complexity. Ann Hist Philos Biol 13:101–174

    Google Scholar 

  • Hossfeld U (2010) Absolute Ernst Haeckel. Orange-Press, Freiburg

    Google Scholar 

  • Huxley J (1942) Evolution: the modern synthesis. Allen and Unwin, London

    Google Scholar 

  • Janvier P (2007) Homologies and evolutionary transitions in early vertebrate history. In: Anderson JS, Sues HD (eds) Major transitions in vertebrate evolution. Indiana University Press, Bloomington, pp 57–121

    Google Scholar 

  • Jefferies RPS (1986) The Ancestry of the Vertebrates. British Museum (Natural History), London

  • Kleinenberg N (1886) Die Entstehung des Annelids aus der Larve von Lopadorhynchus, nebst Bemerkungen über die Entwicklung anderer Polychaeten. Z Wiss Zool. 44:1–227 (pls I–XVI)

    Google Scholar 

  • LaBarbera M (1985) Forward. Larval Forms and other Zoological Verses [of Walter Garstang]. Reprint. University of Chicago Press, Chicago

  • Lacalli TC (2005) Protochordate body plan and the evolutionary role of larvae: old controversies resolved? Can J Zool 83:216–224

    Article  Google Scholar 

  • Lacalli TC (2010) The emergence of the chordate body plan: some puzzles and problems. Acta Zool (Stockholm) 91:4–10

    Article  Google Scholar 

  • Lillie FR (1899) Adaptation in cleavage. In: Biological lectures from the marine biological laboratory, Wood’s Hole. Mass. Ginn, Boston, pp 43–67

  • Lillie FR (1908) The development of the chick: an introduction to embryology. Henry Holt, New York

    Google Scholar 

  • Lowe CJ (2007) Origins of the chordate central nervous system: insights from hemichordates. In: Kass JH, Bullock TH (eds) Evolution of nervous systems, vol 2. Evolution of nervous systems in non-mammalian vertebrates. Academic Press, New York, pp 25–38

    Google Scholar 

  • MacBride EW (1917) Recapitulation as a proof of the inheritance of acquired characters. Scientia 22:425–434

    Google Scholar 

  • MacBride EW (1926) The recapitulation theory. Sci Prog 20:461–474

    Google Scholar 

  • Marshall AM (1893) Vertebrate embryology. Smith, Elder, London

    Google Scholar 

  • Mashanov VS, Zueva OR, Heinzeller T, Aschauer B, Dolmatov IY (2007) Developmental origin of the adult nervous system in a holothurian: an attempt to unravel the enigma of neurogenesis in echinoderms. Evol Dev 9:244–256

    Article  PubMed  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • McMurrich JP (1912) The problem of the vertebrate head in the light of comparative anatomy. In: Proceedings of the Seventh International Zoological Congress, Boston. Cambridge University Press, Cambridge, pp 167–176

  • McNamara KJ (1997) Shapes of time: the evolution of growth and development. Johns Hopkins Press, Baltimore

    Google Scholar 

  • Minelli A (2009) The origins of larval forms: what the data indicate, and what they don’t. Bioessays 32:5–8

    Article  Google Scholar 

  • Miyamoto N, Nakajima Y, Wada H, Saito Y (2010) Development of the nervous system in the acorn worm Balanoglossus simodensis: insights into nervous system evolution. Evol Dev 12:416–424

    Article  PubMed  Google Scholar 

  • Morgan TH (1916) A critique of the theory of evolution. Princeton University Press, Princeton [Incorrectly cited as 1919 by Garstang]

  • Müller F (1869) Facts and arguments for Darwin. Translated by W.S. Dallas. John Murray, London

    Book  Google Scholar 

  • Nielsen C (2000) The origin of metamorphosis. Evol Dev 2:127–129

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1990) Ontogeny and phylogeny: a re-evaluation of the conceptual relationships and some applications. Brain Behav Evol 36:116–140

    Article  PubMed  CAS  Google Scholar 

  • Northcutt RG (1992) The phylogeny of octavolateralis ontogenies: a reaffirmation of Garstang’s phylogenetic hypothesis. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 21–47

    Chapter  Google Scholar 

  • Northcutt RG (1997) Evolution of gnathostome lateral line ontogenies. Brain Behav Evol 50:25–37

    Article  PubMed  CAS  Google Scholar 

  • Nyhart LK (1995) Biology takes form: animal morphology and the German Universities, 1800–1900. University of Chicago Press, Chicago

    Google Scholar 

  • Olsson L, Hossfeld U, Breidbach O (2009a) Preface. Between Ernst Haeckel and the homeobox: the role of developmental biology in explaining evolution. Theory Biosci 128:1–5

    Article  PubMed  Google Scholar 

  • Olsson L, Levit GS, Hossfeld U (2009b) Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions. Naturwissenschaften 97:951–969

    Article  Google Scholar 

  • Page LR (2006) Modern insights on gastropod development: reevaluation of the evolution of a novel body plan. Integr Comp Biol 46:134–143

    Article  PubMed  Google Scholar 

  • Raff R (1996) The shape of life: genes, development, and the evolution of animal form. University of Chicago Press, Chicago

    Google Scholar 

  • Rasmussen N (1991) The decline of recapitulationism in early twentieth-century biology: disciplinary conflict and consensus on the battleground of theory. J Hist Biol 24:51–89

    Article  Google Scholar 

  • Richards RW (2008) The tragic sense of life: Ernst Haeckel and the struggle over evolutionary thought. University of Chicago Press, Chicago

    Google Scholar 

  • Ridley M (1986) Embryology and classical zoology in Great Britain. In: Horder TJ, Witkowski JA, Wylie CC (eds) A history of embryology. Cambridge University Press, Cambridge, pp 35–67

    Google Scholar 

  • Ritter WE (1894) On a new Balanoglossus larva off the coast of California, and its possession of an endostyle. Zool Anz 17:24–30

    Google Scholar 

  • Romer AS (1959) The vertebrate story (a revised and enlarged edition of man and the vertebrates), 4th edn. University of Chicago Press, Chicago

    Google Scholar 

  • Romer AS (1967) Major steps in vertebrate evolution. Science 158:1629–1637

    Article  PubMed  CAS  Google Scholar 

  • Romer AS (1972) The vertebrate as dual animal—somatic and visceral. Evol Biol 6:121–156

    Google Scholar 

  • Satoh N (2008) An aboral-dorsalization hypothesis for chordate origin. Genesis 46:614–622

    Article  PubMed  Google Scholar 

  • Sedgwick A (1909) The influence of Darwin on the study of animal embryology. In: Seward AC (ed) Darwin and modern science. Cambridge University Press, Cambridge, pp 171–184

    Google Scholar 

  • Stach T (2008) Chordate phylogeny and evolution: a not so simple three-taxon problem. J Zool 276:117–141

    Article  Google Scholar 

  • Swalla BJ, Smith AB (2008) Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Phil Trans Royal Soc Lond 363B:1557–1568

    Article  Google Scholar 

  • Tsagkogeorga G, Turon X, Hopcroft RR, Tilak MK, Feldstein T, Shenkar N, Loya Y, Huchon D, Douzery EJP, Delsuc F (2009) An updated 18S rRNA phylogeny of tunicates based on mixture and secondary structure models. BMC Evol Biol 9 (187)

  • Van Name WG (1921) Budding in compound ascidians and other invertebrates and its bearing on the question of the early ancestry of the vertebrates. Bull US Natl Mus 44:275–282

    Google Scholar 

  • Veit O (1920) Studien zur Theorie der vergleichenden Anatomie (Die Rolle der Ontogenie in der Phylogenie). Arch Entwickl Org 47:76–94

    Article  Google Scholar 

  • Veit O (1924) Beiträge zur Kenntnis des Kopfes der Wirbeltiere. II. Frühstadien der Entwicklung des Kopfes von Lepidosteus osseus und ihre prinzipielle Bedeutung für die Kephalogenese der Wirbeltiere. Gegenbaurs Morphol Jahrb 53:319–390

    Google Scholar 

  • Voss SR, Smith JJ (2005) Evolution of salamander life cycles: a major-effect quantitative trait locus contributes to discrete and continuous variation for metamorphic timing. Genetics 170:275–281

    Article  PubMed  CAS  Google Scholar 

  • Wada H (1998) Evolutionary history of free-swimming and sessile lifestyles in urochordates as deduced from 18S rDNA molecular phylogeny. Mol Biol Evol 15:1189–1194

    PubMed  CAS  Google Scholar 

  • Wagner GP (1989) The biological homology concept. Ann Rev Ecol Syst 20:51–69

    Article  Google Scholar 

  • Werneburg I, Sanchez-Villagra MR (2009) Timing of organogenesis support basal position of turtles in the amniote tree of life. BMC Evol Biol 9 (82)

  • Whitman CO (1919) Ontogenetic evolution in pigeons. Pub Carnegie Inst Wash. 257 (number I), 1–194 (pls I–LXXXVIII)

  • Wilson L, Maden M (2005) The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol 282:1–13

    Article  PubMed  CAS  Google Scholar 

  • Worsaae K, Rouse GR (2010) The simplicity of males: dwarf males of four species of Osedax (Sibloglinidae; Annelida) investigated by confocal laser scanning microscopy. J Morphol 271:127–142

    Article  PubMed  Google Scholar 

  • Young JZ (1981) The life of vertebrates, 3rd edn. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgment

I am indebted to Linda Z. Holland for her helpful criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Holland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holland, N.D. Walter Garstang: a retrospective. Theory Biosci. 130, 247–258 (2011). https://doi.org/10.1007/s12064-011-0130-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-011-0130-3

Keywords

Navigation