A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks | Theory in Biosciences Skip to main content

Advertisement

Log in

A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

In this paper we present and discuss a model-based approach to link miRNA translational control with cell signalling networks. MicroRNAs are small regulatory RNAs that are able to regulate the activity and the stability of specific messenger RNA and have been implicated in tumour progression due to their ability to translationally regulate critical oncogenes and tumour suppressors. In our approach, data on protein–protein interactions and miRNA regulation, obtained from bioinformatics databases, are integrated with quantitative experimental data using mathematical modelling. Predictive computational simulations and qualitative (bifurcation) analyses of those mathematical models are employed to further support the investigation of such multifactorial networks in the context of cancer progression. We illustrate our approach with the C-Myc/E2F signalling network, involved in the progression of several tumour subtypes, including colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aguda B, Clarke B (1987) Bistability in chemical reaction networks. Theory and application to the peroxidase-oxidase reaction. J Chem Phys 87(6):3461–3470

    Article  CAS  Google Scholar 

  • Aguda B, Kim Y, Piper-Hunter M, Friedman A, Marsh C (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci USA 105(50):19678–19683

    Article  CAS  PubMed  Google Scholar 

  • Akao Y, Nakagawa Y, Naoe T (2006) Let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29:903–906

    Article  CAS  PubMed  Google Scholar 

  • Aldridge BB, Burke JM, Lauffenburger DA, Sorger PK (2006) Physicochemical modelling of cell signalling pathways. Nat Cell Biol 8(11):1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  PubMed  Google Scholar 

  • Andronov A, Witt A, Chaikin S (1966) Theory of oscillations. Addison-Wesley, Reading, MA

    Google Scholar 

  • Arino O, Hbib M, AitDads E (2006) Delay differential equations and applications. Springer, New York

    Book  Google Scholar 

  • Ashburner M, Ball C, Blake J, Botstein D, Bulter H et al (2000) Gene ontology: tool fort he unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Bader G, Hogue C (2000) BIND-a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 16:465–477

    Article  CAS  PubMed  Google Scholar 

  • Balsa-Canto E, Alonso AA, Banga JR (2008) Computational procedures for optimal experimental design in biological systems. IET Syst Biol 2(4):163–172

    Article  CAS  PubMed  Google Scholar 

  • Banga JR, Balsa-Canto E (2008) Parameter estimation and optimal experimental design. Essays Biochem 45:195–209

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Edgar R (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37(Database issue):D5–D15

    Google Scholar 

  • Bautin N (1984) Behavior of dynamical systems near the boundary of stability. Moscow, Nauka

    Google Scholar 

  • Berezikov E, Cuppen E, Plasterk RH (2006) Approaches to microRNA discovery. Nat Genet 38(Suppl):S2–S7 Review

    Article  CAS  PubMed  Google Scholar 

  • Borneman AR, Leigh-Bell JA, Yu H, Bertone P, Gerstein M, Snyder M (2006) Target hub proteins serve as master regulators of development in yeast. Genes Dev 20(4):435–448

    Article  CAS  PubMed  Google Scholar 

  • Bueno M, Peres de Castro I, Malumbres M (2008) Control of cell proliferation pathways by microRNAs. Cell Cycle 7(20):3143–3148

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Hagedorn C, Cullen B (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–1966

    Article  CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  CAS  PubMed  Google Scholar 

  • Chendrimada T, Finn K, Ji X, Baillat D, Gregory R et al (2007) MicroRNA silencing through RISC recruitment of elF6. Nature 447:823–828

    Article  CAS  PubMed  Google Scholar 

  • Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink WJ, Carvalho B, Meijer GA (2009) MiR-17–92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer 101(4):707–714

    Article  CAS  PubMed  Google Scholar 

  • Fall C, Marland E, Wagner J, Tyson J (2002) Computational cell biology. Springer, New York

    Google Scholar 

  • Glass L, Mackey M (1988) From clocks to chaos. The rhythms of life. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Goldbeter A (2002) Computational approach to cellular rhythms. Nature 420:238–245

    Article  CAS  PubMed  Google Scholar 

  • Goldbeter A, Gonze D, Houart G, Leloup J, Halloy J, Dupont G (2001) From simple to complex oscillatory behavior in metabolic and genetic control networks. Chaos 11(1):247–260

    Article  CAS  PubMed  Google Scholar 

  • Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol 3(10):1871–1878

    Article  CAS  PubMed  Google Scholar 

  • Ho JS, Ma W, Mao DY, Benchimol S (2005) p53-Dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25(17):7423–7431

    Article  CAS  PubMed  Google Scholar 

  • Hoffman B, Liebermann DA (2008) Apoptotic signalling by c-MYC. Oncogene 27(50):6462–6472

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36:664

    Article  CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  CAS  PubMed  Google Scholar 

  • Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, Bork P, von Mering C (2009) STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37(Database issue):D412–D416

    Google Scholar 

  • John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2(11):e363

    Article  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  CAS  PubMed  Google Scholar 

  • Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, Kohler C, Khadake J, Leroy C, Liban A, Lieftink C, Montecchi-Palazzi L, Orchard S, Risse J, Robbe K, Roechert B, Thorneycroft D, Zhang Y, Apweiler R, Hermjakob H (2006) IntAct—open source resource for molecular interaction data. Nucleic Acids Res. doi:10.1093/nar/gkl958

  • Khan Q, Greenhagh D (1999) Hopf bifurcation in epidemic models with a time delay in vaccination. IMA J Math Appl Med Biol 16:133–142

    Article  Google Scholar 

  • Khanin R, Vinciotti V (2008) Computational modelling of post-transcriptional gene regulation by microRNAs. J Comput Biol 15(3):305–316

    Article  CAS  PubMed  Google Scholar 

  • Kholodenko B (2006) Cell signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  CAS  PubMed  Google Scholar 

  • Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational–experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  CAS  PubMed  Google Scholar 

  • Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34(Web Server issue):W451–W454

    Google Scholar 

  • Lai X, Nikolov S, Wolkenhauer O, Vera J (2009) A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in erythropoiesis. Comput Biol Chem 33(4):312–324

    Article  CAS  PubMed  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Lee E, Baek M, Gusev Y, Brackett D, Nuovo G, Schmittgen T (2008) Systematic evolution of microRNA processing patterns in tissues, cell lines, and tumours. RNA 14(1):35–42

    Article  CAS  PubMed  Google Scholar 

  • Lewis B, Burge C, Bartel D (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  • Marsden J, McCracken M (1976) The Hopf bifurcation and its applications. Springer-Verlag, New York

    Google Scholar 

  • Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MR (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306(5696):704–708

    Article  CAS  PubMed  Google Scholar 

  • Nikolov S (2008) Stability and bifurcation behavior of genetic regulatory systems with two delays. C R Acad Bulg Sci 61(5):585–594

    Google Scholar 

  • Nikolov S, Vera J, Kotev V, Wolkenhauer O, Petrov V (2008) Dynamic properties of a delayed protein cross talk model. BioSystems 91:51–68

    Article  CAS  PubMed  Google Scholar 

  • Nikolov S, Lai X, Wolkenhauer O, Vera J (2009a) Time delay and Epo dose modulation in a multilevel model for erythropoiesis. Bioautomation 12:53–69

    Google Scholar 

  • Nikolov S, Petrov V, Kotev V, Georgiev G (2009b) Mathematical description of time delays in pathways crosstalk. In: Handbook of research on systems biology applications in medicine. Douphin County, Idea Group Inc., Chapter 3:27–73

  • Nikolov S, Vera J, Rath O, Kolch W, Wolkenhauer O (2009c) Role of inhibitory proteins as modulators of oscillations in NfkB signalling. IET Syst Biol 3(2):59–76

    Article  CAS  PubMed  Google Scholar 

  • Nikolov S, Lai X, Liebal UW, Wolkenhauer O, Vera J (2010) Integration of sensitivity and bifurcation analysis to detect critical processes in a model combining signalling and cell population dynamics. Int J Syst Sci 41(1):81–105

    Article  Google Scholar 

  • Nissan T, Parker R (2008) Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. RNA 14:1480–1491

    Article  CAS  PubMed  Google Scholar 

  • O’Dannell K, Wentzel E, Zeller K, Dang C, Mendell J (2005) cMyc regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    Article  Google Scholar 

  • Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani R, Rayner T, Sharma A, William E, Sarkans U, Brazma A (2007) ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35(Database issue):D747–D750

    Google Scholar 

  • Peri S, Navarro J, Amanchy R, Kristiansen T, Jonnalagadda C et al (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371

    Article  CAS  PubMed  Google Scholar 

  • Petersen C, Bordelean M, Pelletier J, Sharp P (2006) Short RNAs repress translation after initiation in mammalian cells. Mol Cell 21:533–542

    Article  CAS  PubMed  Google Scholar 

  • Petrocca F, Visone R, Onelli M, Shah M, Nicoloso M et al (2008) E2F1 regulated microRNAs impair TGFβ dependent cell cycle arrest and apoptosis in gastric cancer. Cancer Cell 13(3):272–286

    Article  CAS  PubMed  Google Scholar 

  • Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25(15):1923–1929

    Article  CAS  PubMed  Google Scholar 

  • Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumour suppressor miR-145. Proc Natl Acad Sci USA 106(9):3207–3212

    Article  CAS  PubMed  Google Scholar 

  • Scherrer K, Jost J (2007a) The gene and the genon concept: a functional and information-theoretic analysis. Mol Syst Biol 3:87

    Article  PubMed  Google Scholar 

  • Scherrer K, Jost J (2007b) Gene and genon concept: coding versus regulation. A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology. Theory Biosci 126(2–3):65–113

    Article  CAS  PubMed  Google Scholar 

  • Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M (2008) MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18(5):549–557

    Article  CAS  PubMed  Google Scholar 

  • Selcuklu SD, Donoghue MT, Spillane C (2009) miR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37(4):918–925

    Article  CAS  PubMed  Google Scholar 

  • Sensse A, Eiswirth M (2005) Feedback loops for chaos in activator-inhibitor systems. J Chem Phys 122:044516

    Article  Google Scholar 

  • Shahi P, Loukianiouk S, Bohne-Lang A, Kenzelmann M, Küffer S, Maertens S, Eils R, Gröne HJ, Gretz N, Brors B (2006) Argonaute—a database for gene regulation by mammalian microRNAs. Nucleic Acids Res 34(Database issue):D115–D118

    Google Scholar 

  • Shilnikov L, Shilnikov A, Turaev D, Chua L (2001) Methods of qualitative theory in nonlinear dynamics. Part II. World Scientific, Singapore

    Book  Google Scholar 

  • Sorribas A, Hernández-Bermejo B, Vilaprinyo E, Alves R (2007) Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations. Biotechnol Bioeng 97(5):1259–1277

    Article  CAS  PubMed  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756

    Article  CAS  PubMed  Google Scholar 

  • Tyson JJ, Albert R, Goldbeter A, Ruoff P, Sible J (2008) Biological switches and clocks. J R Soc Interface 5(Suppl 1):S1–S8

    Article  PubMed  Google Scholar 

  • Vera J, Wolkenhauer O (2009) A system biology approach to understand functional activity of cell communication systems. Methods Cell Biol 90:399–415

    Article  Google Scholar 

  • Vera J, Balsa-Canto E, Wellstead P, Banga JR, Wolkenhauer O (2007) Power-law models of signal transduction pathways. Cell Signal 19:1531–1541

    Article  CAS  PubMed  Google Scholar 

  • Vera J, Bachmann J, Pfeifer A, Becker V, Hormiga J, Torres N et al (2008) A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway. BMC Syst Biol 2:38 (ISI: 4; Pubmed). doi:10.1186/1752-0509-2-38

  • Wakiyama M, Takimoto K, Ohara O, Yokoyama K (2007) Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev 21:1857–1862

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Tonita M, Kanai A (2007) Computational methods for microRNA target prediction. Methods Enzymol 427:65–86

    Article  CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin 14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by DAAD-Bulgarian National Science Fund project DO02-23/05.3.2009. J.V. is funded by the German Federal Ministry of Education and Research (BMBF) as part of the project CALSYS-FORSYS under contract 0315264 (www.sbi.uni-rostock.de/calsys). O.W. was supported by the Helmholtz Foundation as part of the Systems Biology Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Wolkenhauer.

Additional information

Svetoslav Nikolov and Julio Vera contributed equally to this work.

Appendix

Appendix

The necessity of systems theory and bifurcation analysis for investigating cell signalling networks

The nature of time delay in biochemical system models is twofold. In some cases the time delay is related to processes that take an intrinsic discrete time to be accomplished, while in other cases it is a consequence of the modelling approach used, in which complex sequences of events provoke the emergence of an apparent time delay (Nikolov et al. 2008). Time delay combined with positive/negative feedback loops (regulatory structures in which the activation of a signalling event positive/negative regulates a signalling process upstream the signalling pathway) can sometimes destabilize the stable unique equilibrium of a biochemical network and vice versa. If the time delay is large/small enough, we find that periodic solutions (sustained oscillations in the levels of the proteins and RNAs integrating the network) can arise from equilibrium by the so-called Andronov–Hopf bifurcation (Goldbeter et al. 2001; Nikolov et al. 2008; Nikolov 2008). In line with this notion, oscillations have been experimentally detected in several signalling networks showing time delays in protein expression (Nelson et al. 2004). In addition, in many cases protein–protein interactions and other biochemical processes result strongly nonlinear and show saturation at sufficiently high concentrations.

When time delay, feedback loops and non-linearity appear combined in systems like signalling networks, a suitable approach for investigating its dynamics is the systems bifurcation analysis. Bifurcation theory studies persistence and exchange of qualitative properties of dynamical systems under continuous perturbations. From the point of view of dynamic systems theory, the Hopf bifurcation theorem (Marsden and McCracken 1976; Goldbeter 2002; Nikolov et al. 2008; Nikolov et al. 2010) together with other elements of the bifurcation theory is basic analytical tools to investigate pathological conditions in biological systems (Glass and Mackey 1988; Fall et al. 2002).

A typical case is that of systems depending continuously on a single parameter. Under small variations of the parameter, the systems may lose stability, and re-stabilize near another equilibrium or a closed orbit, or a larger attractor. The type of transition can be continuous, gentle and smooth, with the new equilibrium being far from the “trivial” one (Arino et al. 2006; Shilnikov et al. 2001; Nikolov et al. 2009a). The first case corresponds to a local bifurcation, the second one is a global bifurcation. Local bifurcations can be of two types: (i) the system leaves its equilibrium state and reaches a new equilibrium state; (ii) the system goes from an equilibrium state to an invariant subset generally composed of several equilibriums and curves connecting them, closed orbits, or tori, …etc. For example, two component mechanisms with autocatalysis easily generate oscillations and bistability. They also exhibit a rich structure of bifurcations to more complicated behaviour, for example pitchfork bifurcation, saddle-node bifurcation or Takens–Bogdanov bifurcation (Fall et al. 2002; Sensse and Eiswirth 2005). The most popular and elementary situation is the Andronov–Hopf bifurcation, characterized by the onset of a closed orbit, starting near the trivial equilibrium (from focus type), which is the phase portrait of a periodic solution with a period close to some fixed number (Andronov et al. 1966; Bautin 1984; Shilnikov et al. 2001; Nikolov et al. 2009b). In this work, we will restrict our investigation to the Andronov–Hopf bifurcation.

Additional calculations performed for the analysis of time delay dynamics

Here, we consider the system (2) when all constants of model are real positive numbers. We use Andronov–Hopf bifurcation analysis when the time delay τ is a bifurcation parameter. To obtain the characteristic equation we linearize the system near the equilibrium points. Let us consider a small perturbation about the equilibrium level defined as \( p = \bar{p} + x,\;v = \bar{v} + y \). Thus, we obtain:

$$ \begin{gathered} {\frac{{{\text{d}}x}}{{{\text{d}}t}}} = - \delta x + c_{1} \ell^{ - \chi \tau } x - c_{2} \ell^{ - \chi \tau } y + c_{3} \ell^{ - 2\chi \tau } x^{2} - c_{4} \ell^{ - 2\chi \tau } xy \hfill \\ - c_{5} \ell^{ - 3\chi \tau } x^{3} - c_{6} \ell^{ - 3\chi \tau } x^{2} y - c_{7} \ell^{ - 4\chi \tau } x^{4} , \hfill \\ {\frac{{{\text{d}}y}}{{{\text{d}}t}}} = k_{2} x - \gamma y, \hfill \\ \end{gathered} $$
(11)

where

$$ \begin{gathered} c_{1} = {\frac{{2\bar{p}k_{1} }}{{\Gamma_{1} }}}\left( {1 - {\frac{{2\bar{p}^{2} + \Gamma_{2} \bar{v}}}{{\Gamma_{1} }}}} \right),\quad c_{2} = {\frac{{k_{1} \Gamma_{2} \bar{p}^{2} }}{{\Gamma_{1}^{2} }}}, \hfill \\ \quad c_{3} = {\frac{{k_{1} }}{{\Gamma_{1} }}}\left( {1 - {\frac{{6\bar{p}^{2} + \Gamma_{2} \bar{v}}}{{\Gamma_{1} }}}} \right),\quad c_{4} = {\frac{{2k_{1} \Gamma_{2} \bar{p}}}{{\Gamma_{1}^{2} }}}, \hfill \\ c_{5} = {\frac{{4k_{1} \bar{p}}}{{\Gamma_{1}^{2} }}},\quad c_{6} = {\frac{{k_{1} \Gamma_{2} }}{{\Gamma_{1}^{2} }}},\quad c_{7} = {\frac{{k_{1} }}{{\Gamma_{1}^{2} }}}. \hfill \\ \end{gathered} $$
(12)

Note, that function \( {\frac{1}{{\Gamma_{1} + \left[ {p\left( {t - \tau } \right)} \right]^{2} + \Gamma_{2} v\left( {t - \tau } \right)}}} \) is written in Maclaurin series and we take only the linear term. The associated transcendental characteristic equation of (11), where χ is a complex parameter, has the following form:

$$ \chi^{2} + \left( {\gamma + \delta } \right)\chi + \delta \gamma = \left( {c_{1} \chi + c_{1} \gamma - k_{2} c_{2} } \right)\ell^{ - \chi \tau } . $$
(13)

The stability of the equilibrium states depend on the sign of the real parts of the roots of (13). If both diagonal elements of the Jacobian (stability) matrix, i.e. \( \left( { - \delta + c_{1} \ell^{ - \chi \tau } } \right) \) and −γ, are always negative, then tr(J) never changes sign and an Andronov–Hopf bifurcation cannot occur. If (−δ + c 1χτ) and −γ are of opposite sign, then k 2 and −c 2χτ must also be of opposite sign in order det(J) to be positive. Thus, in our case, the Jacobian matrix has the typically form that produce Andronov–Hopf bifurcation, i.e.

$$ J = \left| \begin{gathered} + \quad - \hfill \\ + \quad - \hfill \\ \end{gathered} \right|. $$
(14)

Note, that mechanisms like this one are called activator–inhibitor models.

Farther, we examine Andronov–Hopf bifurcation for the system (2), using time delay as the bifurcation parameter. We rewrite (13) in terms of its real and imaginary parts as:

$$ \left| \begin{aligned} m^{2} - n^{2} + \left( {\gamma + \delta } \right)m + \delta \gamma & = \ell^{ - m\tau } \left[ {\left( {c_{1} m + c_{1} \gamma - k_{2} c_{2} } \right){ \cos }n\tau } \right. \\ & \quad + c_{1} n{ \sin }\left. {n\tau } \right], \\ 2mn + n\left( {\gamma + \delta } \right) & = \ell^{ - m\tau } \left[ {\left( {c_{1} m + c_{1} \gamma - c_{2} k_{2} } \right){ \sin }n\tau - c_{1} n{ \cos }n\tau } \right]. \\ \end{aligned} \right. $$
(15)

To find the first bifurcation point we look for purely imaginary roots \( \chi = \pm in,\quad n \in R, \) of (13), i.e. we set m = 0. This substitution reduces the above two equations in the form:

$$ \left| \begin{gathered} - n^{2} + \delta \gamma = \left( {c_{1} \gamma - c_{2} k_{2} } \right){ \cos }n\tau + c_{1} n{ \sin }n\tau , \hfill \\ n\left( {\gamma + \delta } \right) = \left( {c_{1} \gamma - c_{2} k_{2} } \right){ \sin }n\tau - c_{1} n{ \cos }n\tau , \hfill \\ \end{gathered} \right. $$
(16)

One can notice that if n is a solution of (16), then so is −n. Hence, we only investigate for positive solutions n of (16). Squaring both equations in (16) and adding, we get

$$ n^{4} + \left( {\gamma^{2} + \delta^{2} - c_{1}^{2} } \right)n^{2} - \left( {c_{1} \gamma - c_{2} k_{2} } \right)^{2} + \delta^{2} \gamma^{2} = 0. $$
(17)

Because we only consider the case when system (2) is unstable for τ = 0, therefore the roots of the corresponding characteristic equation,

$$ \chi^{2} + \left( {\gamma + \delta - c_{1} } \right)\chi - \left( {c_{1} \gamma - c_{2} k_{2} } \right) + \delta \gamma = 0, $$
(18)

must have positive real parts and from the Routh–Hurwitz conditions for a square polynomial

$$ \delta \gamma - \left( {c_{1} \gamma - c_{2} k_{2} } \right) > 0\quad {\text{and}}\quad \gamma + \delta - c_{1}\,<\,0. $$
(19)

Then the left-hand side of Eq. 18 is positive for large values of n and also positive for n = 0. On the other hand, for Eq. 17 we have:

$$ n_{ \pm } = \sqrt {{\frac{{c_{1}^{2} - \gamma^{2} - \delta^{2} \pm \sqrt \Updelta }}{2}}} . $$
(20)

For both of these last expressions (17 and 19) to be real positive valued the discriminant

$$ \Updelta = \gamma^{4} + 2\left( {c_{1}^{2} - \delta^{2} } \right)\gamma^{2} - 8c_{1} c_{2} k_{2} \gamma + c_{1}^{2} \left( {c_{1}^{2} - 2\delta^{2} } \right) + 4c_{2}^{2} k_{2}^{2} + \delta^{2} , $$
(21)

must be non-negative, and \( c_{1}^{2} > \gamma^{2} + \delta^{2} \mp \sqrt \Updelta \). Hence, Eq. 17 has at least one simple root and n 2 is the last positive simple root of this equation. Moreover, to apply the Hopf bifurcation theorem, according to (Khan and Greenhagh 1999), the following theorem in this situation is applies:

Theorem 1

Suppose that n b is the last positive simple root of (17). Then,in(τ b ) = in b is a simple root of (13) andm(τ) + in(τ) is differentiable with respect toτ in a neighbourhood ofτ = τ b .

To establish an Andronov–Hopf bifurcation at τ = τ b, we need to show that the following transversality condition \( \left. {{\frac{{{\text{d}}m}}{{{\text{d}}\tau }}}} \right|_{{\tau = \tau_{b} }} \ne 0 \) is satisfied.

Hence, if denote

$$ H\left( {\chi ,\tau } \right) = \chi^{2} + \left( {\gamma + \delta } \right)\chi + \delta \gamma - \left( {c_{1} \chi + c_{1} \gamma - k_{2} c_{2} } \right)\ell^{ - \chi \tau } , $$
(22)

then

$$ {\frac{{{\text{d}}\chi }}{{{\text{d}}\tau }}} = {\raise0.7ex\hbox{${ - {\frac{\partial H}{\partial \tau }}}$} \!\mathord{\left/ {\vphantom {{ - {\frac{\partial H}{\partial \tau }}} {{\frac{\partial H}{\partial \chi }}}}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${{\frac{\partial H}{\partial \chi }}}$}} = {\frac{{ - \chi \left( {c_{1} \chi + c_{1} \gamma - k_{2} c_{2} } \right)\ell^{ - \chi \tau } }}{{2\chi + \gamma + \delta - c_{1} \ell^{ - \chi \tau } + \tau \ell^{ - \chi \tau } \left( {c_{1} \chi + c_{1} \gamma - k_{2} c_{2} } \right)}}}. $$
(23)

Evaluating the real part of this equation at τ = τ b and setting χ = in b yield

$$ \left. {{\frac{{{\text{d}}m}}{{{\text{d}}\tau }}}} \right|_{{\tau = \tau_{\text{b}} }} = {\text{Re}}\left. {\left( {{\frac{{{\text{d}}\chi }}{{{\text{d}}\tau }}}} \right)} \right|_{{\tau = \tau_{\text{b}} }} = {\frac{{n_{\text{b}}^{2} \left[ {2n_{\text{b}}^{2} + \gamma^{2} + \delta^{2} - c_{1}^{2} - 2\left( {\gamma + \delta } \right)^{2} } \right]}}{{L^{2} + I^{2} }}}, $$
(24)

where \( L = \gamma + \delta + \tau_{\text{b}} \left( { - n_{\text{b}}^{2} + \delta \gamma } \right) - c_{1} { \cos }n_{\text{b}} \tau_{\text{b}} \) and \( I = 2n_{\text{b}} + c_{1} { \sin }n_{\text{b}} \tau_{\text{b}} - n_{\text{b}} \tau_{\text{b}} \left( {\gamma + \delta } \right). \)

Let θ = n 2b ; then (17) reduces to

$$ g = \theta^{2} + \left( {\gamma^{2} + \delta^{2} - c_{1}^{2} } \right)\theta - \left( {c_{1} \gamma - c_{2} k_{2} } \right)^{2} + \delta^{2} \gamma^{2} . $$
(25)

Then, for \( g^{\prime } \left( \theta \right) \) we have

$$ \left. {g^{\prime } \left( \theta \right)} \right|_{{\tau = \tau_{\text{b}} }} = \left. {{\frac{{{\text{d}}g}}{{{\text{d}}\theta }}}} \right|_{{\tau = \tau_{\text{b}} }} = 2\theta + \gamma^{2} + \delta^{2} - c_{1}^{2} . $$
(26)

If n b is the least positive simple root of (17), then \( \left. {{\frac{{{\text{d}}g}}{{{\text{d}}\tau }}}} \right|_{{\theta = n_{\text{b}}^{2} }}\,>\,0 \). Hence,

$$ \left. {{\frac{{{\text{d}}m}}{{{\text{d}}\tau }}}} \right|_{{\tau = \tau_{\text{b}} }} = {\text{Re}}\left. {\left( {{\frac{{{\text{d}}\chi }}{{{\text{d}}\tau }}}} \right)} \right|_{{\tau = \tau_{\text{b}} }} = {\frac{{n_{\text{b}}^{2} \left[ {g^{\prime } - 2\left( {\gamma + \delta } \right)^{2} } \right]}}{{L^{2} + I^{2} }}} \,<\, 0. $$
(27)

According to the Hopf bifurcation theorem (Marsden and McCracken 1976), we define the main analytical result of this paper in the form of the following Theorem 2:

Theorem 2

If nbis the least positive root of (17), then an Andronov–Hopf bifurcation occurs asτ passes through τ b if only if\( g^{\prime } < 2\left( {\gamma + \delta } \right)^{2} \).

Corollary 2.1

Whenτ > τ b , then the steady state\( \bar{E} \)of system (2) is locally asymptotically stable under the stated conditions.

Parameter values used in the numerical analysis.

$$ \begin{gathered} \Gamma_{1} = 0.1\;\left( {\upmu {\text{M}}^{2} } \right),\quad \Gamma_{2} = 0.056\;\left( {\upmu {\text{M}}} \right),\quad \alpha \in \left( {0,0.033} \right)\;\left( {\upmu {\text{Mh}}^{ - 1} } \right), \hfill \\ \beta = 0.01\;\left( {\upmu {\text{Mh}}^{-1} } \right),\quad \delta = 0.26\;\left( {{\text{h}}^{ - 1} } \right),\quad k_{1} = 0.4\left( {\upmu {\text{Mh}}^{ - 1} } \right), \hfill \\ k_{2} = 0.3\;\left( {{\text{h}}^{ - 1} } \right),\quad \gamma = 0.02\;\left( {{\text{h}}^{ - 1} } \right). \hfill \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolov, S., Vera, J., Schmitz, U. et al. A model-based strategy to investigate the role of microRNA regulation in cancer signalling networks. Theory Biosci. 130, 55–69 (2011). https://doi.org/10.1007/s12064-010-0109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-010-0109-5

Keywords

Navigation