TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections | Neuroinformatics Skip to main content
Log in

TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • DeFelipe, J., López-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larrañaga, P., Anderson, S., Burkhalter, A., Cauli, B., Fairén, A., & Feldmeyer, D. (2013). New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 14, 202–216.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feng, L., Zhao, T., & Kim, J. (2015). NeuTube 1.0: a new design for efficient neuron reconstruction software based on the SWC format. eNeuro, 2, 0049–0014.

    Article  Google Scholar 

  • Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. Journal of Microscopy, 218, 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Bellido, P. T., Peng, H., Yang, J., Georgopoulos, A. P., & Olberg, R. M. (2013). Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction. Proceedings of the National Academy of Sciences, 110, 696–701.

    Article  CAS  Google Scholar 

  • Kawaguchi, Y., Karube, F., & Kubota, Y. (2006). Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cerebral Cortex, 16, 696–711.

    Article  PubMed  Google Scholar 

  • Krahe, T. E., El-Danaf, R. N., Dilger, E. K., Henderson, S. C., & Guido, W. (2011). Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse. The Journal of Neuroscience, 31, 17437–17448.

    Article  PubMed  CAS  Google Scholar 

  • Lu, J., Fiala, J. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS One, 4, e5655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ming, X., Li, A., Wu, J., Yan, C., Ding, W., Gong, H., Zeng, S., & Liu, Q. (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PLoS One, 8, e84557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Myatt, D. R., Hadlington, T., Ascoli, G. A., & Nasuto, S. J. (2012). Neuromantic–from semi-manual to semi-automatic reconstruction of neuron morphology. Frontiers in Neuroinformatics, 6, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanaswamy, A., Wang, Y., & Roysam, B. (2011). 3-D image pre-processing algorithms for improved automated tracing of neuronal arbors. Neuroinformatics, 9, 219–231.

    Article  PubMed  Google Scholar 

  • Peng, H., Ruan, Z., Atasoy, D., & Sternson, S. (2010). Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 26, i38–i46.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peng, H., Long, F., & Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27, i239–i247.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peng, H., Roysam, B., & Ascoli, G. A. (2013). Automated image computing reshapes computational neuroscience. BMC Bioinformatics, 14, 293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng, H., Tang, J., Xiao, H., Bria, A., Zhou, J., Butler, V., Zhou, Z., Gonzalez-Bellido, P. T., Oh, S. W., & Chen, J. (2014). Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nature Communications, 5, 4342.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., & Ascoli, G. A. (2015a). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron. doi:10.1016/j.neuron.2015.1006.1036.

    PubMed  Google Scholar 

  • Peng, H., Meijering, E., & Ascoli, G. A. (2015b). From DIADEM to BigNeuron. Neuroinformatics, 13, 9270. doi:10.1007/s12021-015-9270-9.

    Article  Google Scholar 

  • Wan, Y., Long, F., Qu, L., Xiao, H., Hawrylycz, M., Myers, E. W., & Peng, H. (2015). BlastNeuron for automated comparison, retrieval and clustering of 3D neuron morphologies. Neuroinformatics. doi:10.1007/s12021-12015-19272-12027.

    PubMed  Google Scholar 

  • Wang, Y., Narayanaswamy, A., Tsai, C.-L., & Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9, 193–217.

    Article  PubMed  Google Scholar 

  • Wearne, S., Rodriguez, A., Ehlenberger, D., Rocher, A., Henderson, S., & Hof, P. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136, 661–680.

    Article  PubMed  CAS  Google Scholar 

  • Wu, J., He, Y., Yang, Z., Guo, C., Luo, Q., Zhou, W., Chen, S., Li, A., Xiong, B., & Jiang, T. (2014). 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. NeuroImage, 87, 199–208.

    Article  PubMed  Google Scholar 

  • Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29, 1448–1454.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou, Z., Sorensen, S., & Peng, H. (2015) Neuron crawler: an automatic tracing algorithm for very large neuron images. Proceedings of IEEE 2015 International Symposium on Biomedical Imaging: From Nano to Macro, 870–874.

Download references

Acknowledgments

We thank Nuno da Costa, Staci Sorensen, Julie Harris, Raina D’Aleo, and Soumya Chatterjee for providing the images of mouse neurons, Paloma Gonzalez-Bellido for providing the images of dragonfly neurons, Hanbo Chen and Yujie Li for comments. This work is supported by the Allen Institute for Brain Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanchuan Peng.

Additional information

Availability

This method has been implemented as an Open Source plugin for Vaa3D (http://vaa3d.org).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Liu, X., Long, B. et al. TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections. Neuroinform 14, 41–50 (2016). https://doi.org/10.1007/s12021-015-9278-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-015-9278-1

Keywords

Navigation