Abstract
Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images.
Similar content being viewed by others
References
DeFelipe, J., López-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larrañaga, P., Anderson, S., Burkhalter, A., Cauli, B., Fairén, A., & Feldmeyer, D. (2013). New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 14, 202–216.
Feng, L., Zhao, T., & Kim, J. (2015). NeuTube 1.0: a new design for efficient neuron reconstruction software based on the SWC format. eNeuro, 2, 0049–0014.
Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. Journal of Microscopy, 218, 52–61.
Gonzalez-Bellido, P. T., Peng, H., Yang, J., Georgopoulos, A. P., & Olberg, R. M. (2013). Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction. Proceedings of the National Academy of Sciences, 110, 696–701.
Kawaguchi, Y., Karube, F., & Kubota, Y. (2006). Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cerebral Cortex, 16, 696–711.
Krahe, T. E., El-Danaf, R. N., Dilger, E. K., Henderson, S. C., & Guido, W. (2011). Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse. The Journal of Neuroscience, 31, 17437–17448.
Lu, J., Fiala, J. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS One, 4, e5655.
Ming, X., Li, A., Wu, J., Yan, C., Ding, W., Gong, H., Zeng, S., & Liu, Q. (2013). Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PLoS One, 8, e84557.
Myatt, D. R., Hadlington, T., Ascoli, G. A., & Nasuto, S. J. (2012). Neuromantic–from semi-manual to semi-automatic reconstruction of neuron morphology. Frontiers in Neuroinformatics, 6, 4.
Narayanaswamy, A., Wang, Y., & Roysam, B. (2011). 3-D image pre-processing algorithms for improved automated tracing of neuronal arbors. Neuroinformatics, 9, 219–231.
Peng, H., Ruan, Z., Atasoy, D., & Sternson, S. (2010). Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 26, i38–i46.
Peng, H., Long, F., & Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27, i239–i247.
Peng, H., Roysam, B., & Ascoli, G. A. (2013). Automated image computing reshapes computational neuroscience. BMC Bioinformatics, 14, 293.
Peng, H., Tang, J., Xiao, H., Bria, A., Zhou, J., Butler, V., Zhou, Z., Gonzalez-Bellido, P. T., Oh, S. W., & Chen, J. (2014). Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nature Communications, 5, 4342.
Peng, H., Hawrylycz, M., Roskams, J., Hill, S., Spruston, N., Meijering, E., & Ascoli, G. A. (2015a). BigNeuron: large-scale 3D neuron reconstruction from optical microscopy images. Neuron. doi:10.1016/j.neuron.2015.1006.1036.
Peng, H., Meijering, E., & Ascoli, G. A. (2015b). From DIADEM to BigNeuron. Neuroinformatics, 13, 9270. doi:10.1007/s12021-015-9270-9.
Wan, Y., Long, F., Qu, L., Xiao, H., Hawrylycz, M., Myers, E. W., & Peng, H. (2015). BlastNeuron for automated comparison, retrieval and clustering of 3D neuron morphologies. Neuroinformatics. doi:10.1007/s12021-12015-19272-12027.
Wang, Y., Narayanaswamy, A., Tsai, C.-L., & Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9, 193–217.
Wearne, S., Rodriguez, A., Ehlenberger, D., Rocher, A., Henderson, S., & Hof, P. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136, 661–680.
Wu, J., He, Y., Yang, Z., Guo, C., Luo, Q., Zhou, W., Chen, S., Li, A., Xiong, B., & Jiang, T. (2014). 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. NeuroImage, 87, 199–208.
Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29, 1448–1454.
Zhou, Z., Sorensen, S., & Peng, H. (2015) Neuron crawler: an automatic tracing algorithm for very large neuron images. Proceedings of IEEE 2015 International Symposium on Biomedical Imaging: From Nano to Macro, 870–874.
Acknowledgments
We thank Nuno da Costa, Staci Sorensen, Julie Harris, Raina D’Aleo, and Soumya Chatterjee for providing the images of mouse neurons, Paloma Gonzalez-Bellido for providing the images of dragonfly neurons, Hanbo Chen and Yujie Li for comments. This work is supported by the Allen Institute for Brain Science.
Author information
Authors and Affiliations
Corresponding author
Additional information
Availability
This method has been implemented as an Open Source plugin for Vaa3D (http://vaa3d.org).
Rights and permissions
About this article
Cite this article
Zhou, Z., Liu, X., Long, B. et al. TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections. Neuroinform 14, 41–50 (2016). https://doi.org/10.1007/s12021-015-9278-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-015-9278-1