BAIDet: remote sensing image object detector based on background and angle information | Signal, Image and Video Processing Skip to main content

Advertisement

Log in

BAIDet: remote sensing image object detector based on background and angle information

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Remote sensing object detection, with large differences in object size, arbitrary orientation and tight arrangement, leads to difficulties in object recognition and localization. Therefore, a remote sensing image object Detector (BAIDet) based on Background and Angle Information is proposed in this paper. Firstly, a large convolutional kernel global attention module is designed to fully utilize the global information of remote sensing images by expanding the receptive field. And obtain the edge information of ground objects through deformable convolution. Secondly, an angle-sensitive probabilistic intersection-over-union loss function (AS-ProbIoU Loss) is developed for bounding box regression for oriented object detection. Finally, experimental results on four remote sensing image datasets, DOTA, HRSC 2016, UCAS-AOD, and DIOR-R, demonstrated the effectiveness of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Zhang, F., Wang, X., Zhou, S., Wang, Y.: DARDet: a dense anchor-free rotated object detector in aerial images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Google Scholar 

  2. Deng, C., Jing, D., Han, Y., Wang, S., Wang, H.: FAR-Net: fast anchor refining for arbitrary-oriented object detection. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Google Scholar 

  3. Sheng, Z., Shanshan, L., Guofang, W., Xinnai, Z., Jianwei, G.: Refined multi-scale feature-oriented object detection of the remote sensing images. Natl. Remote Sens. Bull. 26(12), 2616–2628 (2023)

    Google Scholar 

  4. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

  5. Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y., Xue, X.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimedia 20(11), 3111–3122 (2018)

    Article  Google Scholar 

  6. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

  7. Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11976–11986 (2022)

  8. Li, Y., Hou, Q., Zheng, Z., Cheng, M.-M., Yang, J., Li, X.: Large selective kernel network for remote sensing object detection. arXiv:2303.09030 (2023)

  9. Yang, X., Yan, J.: Arbitrary-oriented object detection with circular smooth label. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VIII 16, pp. 677–694. Springer (2020)

  10. Yang, X., Hou, L., Zhou, Y., Wang, W., Yan, J.: Dense label encoding for boundary discontinuity free rotation detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15819–15829 (2021)

  11. Yang, X., Yang, X., Yang, J., Ming, Q., Wang, W., Tian, Q., Yan, J.: Learning high-precision bounding box for rotated object detection via Kullback–Leibler divergence. Adv. Neural Inf. Process. Syst. 34, 18381–18394 (2021)

    Google Scholar 

  12. Yang, X., Zhou, Y., Zhang, G., Yang, J., Wang, W., Yan, J., Zhang, X., Tian, Q.: The KFIoU loss for rotated object detection. arXiv:2201.12558 (2022)

  13. Yang, X., Yan, J., Ming, Q., Wang, W., Zhang, X., Tian, Q.: Rethinking rotated object detection with gaussian wasserstein distance loss. In: International Conference on Machine Learning. PMLR, pp. 11830–11841 (2021)

  14. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9308–9316 (2019)

  15. Llerena, J.M., Zeni, L.F., Kristen, L.N., Jung, C.: Gaussian bounding boxes and probabilistic intersection-over-union for object detection. arXiv:2106.06072 (2021)

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  17. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)

  18. Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L.: Dota: a large-scale dataset for object detection in aerial images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983 (2018)

  19. Liu, Z., Yuan, L., Weng, L., Yang, Y.: A high resolution optical satellite image dataset for ship recognition and some new baselines. In: International Conference on Pattern Recognition Applications and Methods. SciTePress, vol. 2, pp. 324–331 (2017)

  20. Zhu, H., Chen, X., Dai, W., Fu, K., Ye, Q., Jiao, J.: Orientation robust object detection in aerial images using deep convolutional neural network. In: 2015 IEEE International Conference on Image Processing (ICIP). IEEE, pp. 3735–3739 (2015)

  21. Cheng, G., Wang, J., Li, K., Xie, X., Lang, C., Yao, Y., Han, J.: Anchor-free oriented proposal generator for object detection. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2022)

    Google Scholar 

  22. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

  23. Zhang, Z., Guo, W., Zhu, S., Yu, W.: Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks. IEEE Geosci. Remote Sens. Lett. 15(11), 1745–1749 (2018)

    Article  Google Scholar 

  24. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv:1804.02767 (2018)

  25. Ding, J., Xue, N., Long, Y., Xia, G.-S., Lu, Q.: Learning RoI transformer for oriented object detection in aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2849–2858 (2019)

  26. Ming, Q., Zhou, Z., Miao, L., Zhang, H., Li, L.: Dynamic anchor learning for arbitrary-oriented object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2355–2363 (2021)

  27. Ming, Q., Miao, L., Zhou, Z., Yang, X., Dong, Y.: Optimization for arbitrary-oriented object detection via representation invariance loss. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2021)

    Article  Google Scholar 

  28. Jiang, Y., Zhu, X., Wang, X., Yang, S., Li, W., Wang, H., Fu, P., Luo, Z.: R2CNN: rotational region CNN for orientation robust scene text detection. arXiv:1706.09579 (2017)

  29. Qian, W., Yang, X., Peng, S., Yan, J., Guo, Y.: Learning modulated loss for rotated object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2458–2466 (2021)

  30. Xu, Y., Fu, M., Wang, Q., Wang, Y., Chen, K., Xia, G.-S., Bai, X.: Gliding vertex on the horizontal bounding box for multi-oriented object detection. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1452–1459 (2020)

    Article  Google Scholar 

  31. Yang, X., Yan, J., Feng, Z., He, T.: R3det: refined single-stage detector with feature refinement for rotating object. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3163–3171 (2021)

  32. Chen, Z., Chen, K., Lin, W., See, J., Yu, H., Ke, Y., Yang, C.: Piou loss: Towards accurate oriented object detection in complex environments. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pp. 195–211. Springer (2020)

  33. Pan, X., Ren, Y., Sheng, K., Dong, W., Yuan, H., Guo, X., Ma, C., Xu, C.: Dynamic refinement network for oriented and densely packed object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11207–11216 (2020)

  34. Han, J., Ding, J., Li, J., Xia, G.-S.: Align deep features for oriented object detection. IEEE Trans. Geosci. Remote Sens. 60, 1–11 (2021)

    Google Scholar 

  35. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

  36. Yang, X., Yang, J., Yan, J., Zhang, Y., Zhang, T., Guo, Z., Sun, X., Fu, K.: Scrdet: towards more robust detection for small, cluttered and rotated objects. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8232–8241 (2019)

  37. Li, C., Xu, C., Cui, Z., Wang, D., Zhang, T., Yang, J.: Feature-attentioned object detection in remote sensing imagery. In: 2019 IEEE International Conference on Image Processing (ICIP). IEEE, pp. 3886–3890 (2019)

  38. Wang, J., Yang, W., Li, H.-C., Zhang, H., Xia, G.-S.: Learning center probability map for detecting objects in aerial images. IEEE Trans. Geosci. Remote Sens. 59(5), 4307–4323 (2020)

    Article  Google Scholar 

  39. Zhang, G., Lu, S., Zhang, W.: CAD-Net: a context-aware detection network for objects in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 57(12), 10015–10024 (2019)

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Key R &D Porgram of China(2021YFD13000500, 2023YFB3904905, 2022YFC3301605); the project of Zhanjiang Science and Technology Bureau(2021A05040).

Author information

Authors and Affiliations

Authors

Contributions

Jiangfeng Yu wrote the main manuscript text and designed the oriented object detection model. Song Shuhua and Sun Lin provided constructive suggestions and revised the manuscript. Guo Guolong, Chen Kai provided suggestions for the design of the detector.

Corresponding author

Correspondence to Shuhua Song.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Sun, L., Song, S. et al. BAIDet: remote sensing image object detector based on background and angle information. SIViP 18, 9295–9304 (2024). https://doi.org/10.1007/s11760-024-03546-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-024-03546-x

Keywords