Abstract
This paper presents a new approach called polynomial discrete Radon transform (PDRT), regarded as a generalization of the classical finite discrete Radon transform. Specifically, the PDRT transforms an image into Radon space by summing the pixels according to polynomial curves. The PDRT can be applied on square \(p \times p\) images where \(p\) is assumed to be a prime number. It is based on a simple arithmetic operations and requires no data interpolation. An interesting property of the PDRT is its exact inversion. This means that an image can be transformed and then perfectly reconstructed. Through this study, we show that the new approach can be applied for some pattern recognition applications.
Similar content being viewed by others
References
Beylkin, G.: Discrete Radon transform. IEEE Trans. Acoust. Speech Signal Process. 35, 162–172 (1987)
Deans, S.: Hough transform from the Radon transform. IEEE Trans. Pattern Anal. Mach. Intell. PAMI–3(2), 185–188 (1981)
Deans, S.R.: The Radon Transform and Some of Its Applications, revised edition. Krieger Publishing Co., Malabar, FL (1993)
Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley Inter-Science, New York (1973)
Guil, N., Zapata, E.: Lower order circle and ellipse Hough transform. Pattern Recognit. 30(10), 1729–1744 (1997)
Hendriks, C.L.L., van Ginkel, M., Verbeek, P.W., van Vliet, L.J.: The generalized Radon transform: Sampling, accuracy and memory considerations. Pattern Recognit. 38(12), 2494–2505 (2005)
Hough, P.: Methods and means for recognizing complex patterns. U.S. Patent (1962)
Kesidis, A.: A gray-scale inverse Hough transform algorithm. In: The 2000 IEEE International Symposium on Circuits and Systems, Geneva, vol. 5, pp. 297–300 (2000)
Kesidis, A.L., Papamarkos, N.: A window-based inverse Hough transform. Pattern Recognit. 33(6), 1105–1117 (2000)
Kesidis, A., Papamarkos, N.: On the inverse Hough transform. IEEE Trans. Pattern Anal. Mach. Intell. 21, 1329–1342 (1999)
Kingston, A.: Orthogonal discrete radon transform over \(p^n\times p^n\) images. Signal Process. 86, 2040–2050 (2006)
Kingston, A., Svalbe, I.: Generalized finite radon transform for \(n \times n\) images. Image Vis. Comput. 25, 1620–1630 (2007)
Li, H., Lavin, M., LeMaster, R.: Fast Hough transform: a hierarchical approach. Comput. Vis. Graph. Image Process. 36(12), 139–161 (1986)
Lun, D., Chen, T., Hsung, T., Feng, D., Chan, Y.: Efficient blind image restoration using discrete periodic Radon transform. IEEE Trans. Image Process. 13, 188–200 (2004)
Lun, D., Hsung, T., Chen, T.: Orthogonal discrete periodic Radon transform. Part ii: applications. Signal Process. 83, 957–971 (2003)
Lun, D., Hsung, T., Chen, T.: Orthogonal discrete periodic Radon transform. Part i: theory and realization. Signal Process. 83, 941–955 (2003)
Lun, D., Hsung, T., Shen, T.: Orthogonal discrete periodic Radon transform. Part i: theory and realization. Signal Process. 83, 941–955 (2003)
Matus, F., Flusser, J.: Image representation via a finite Radon transform. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 996–1006 (1993)
Minh, N., Vetterli, M.: Image denoising using orthonormal finite ridgelet transform. In: Proceedings of the SPIE Wavelet Application in Signal and Image Processing, vol. 4119, pp. 831–842 (2000)
Minh, N., Vetterli, M.: Orthonormal finite ridgelet transform for image compression. In: Proceedings of the International Conference on Image Processing, vol. 2, pp. 367–370 (2000)
Murphy, L.M.: Linear feature detection and enhancement in noisy images via the Radon transform. Pattern Recognit. Lett. 4, 279–284 (1986)
Princen, J., Illingworth, J., Kittler, J.: Hypothesis testing: a framework for analyzing and optimizing Hough transform performance. IEEE Trans. Pattern Anal. Mach. Intell. 4(10), 329–341 (1994)
Radon, J.: Ufiber die bestimmung von funktionen durch ihre integral-werte langs gewisser mannigfaltigkeiten. Berichte Sachsische Akademie der Wissenschaften, Leipzig, Math-Phys. Kl 62, 262–267 (1917)
Shepp, L., Krustal, J.: Computerized tomography: the new medical x-ray technology. Am. Math. Mon. 85, 420–439 (1978)
Svalbe, I., van der Spek, D.: Reconstruction of tomographic images using analog projections and the digital Radon transform. Linear Algebra Appl. 339, 125–145 (2001)
Tofts, P.: The Radon Ttransform: Theory and Implementation. Ph.D. Thesis (1996)
Yuen, S., Ma, C.: An investigation of the nature of parameterization for the Hough transform. Pattern Recognit. 6, 1009–1040 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
ELouedi, I., Fournier, R., Naït-Ali, A. et al. The polynomial discrete Radon transform. SIViP 9 (Suppl 1), 145–154 (2015). https://doi.org/10.1007/s11760-014-0727-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-014-0727-3