Parallel support vector architectures for taxonomy of radial pulse morphology | Signal, Image and Video Processing Skip to main content

Advertisement

Log in

Parallel support vector architectures for taxonomy of radial pulse morphology

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Application of impedance plethysmography (IP) for impedance measurement is the paradigm in assessment of central and peripheral blood flow. We propose the expediency of IP to unearth hidden patterns from Plethysmographic observations on a radial pulse. The variability analysis in one thousand control and disease subjects evolves an archetype of eight different morphological patterns. The peripheral pulse waveforms not only characterize the physiology of control subjects, but also define the morphology of patients suffering from Myocardial Infarction, cirrhosis of liver, and disorder of lungs. Diverse parallel support vector machine (pSVM) topologies are designed as an aid to the physician for multiclass pattern recognition problem. Besides a lowest confusion coefficient (0.133), the PCA-based pSVM classifier offers a comparatively higher generalized correlation coefficient and κ value of 0.6586 and 0.8407, respectively. However, the ROC characteristics and the benchmark parameters suggest that wavelet-based pSVM is the optimum classifier with a sensitivity of 85.33 %, an elevated MCC (0.69), and a least upper bound on the expected error. pSVM stands out as a model classifier as compared with identified indices such as, Fishers Ratio, Morphology Index, and Heart rate variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhinav, S.M., Kumar, M., Anand, S., Salhan, A., Santhosh, J.: Nadi Yantra: a robust system design to capture the signals from the radial artery for non-invasive diagnosis. The IEEE 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE 2008), Shanghai, China, May 16–18, pp. 1387–1390 (2008)

  2. Jeon, Y.J., Kim, J.U., Lee, H.J., et al.: A clinical study of the pulse wave characteristics at the three pulse diagnosis positions of Chon, Gwan and Cheok. Evid-based. Complement. Altern. Med. 2011 (2011). doi:10.1093/ecam/nep150

  3. Yoon Y., Lee M., Soh K.: Pulse type classification by varying contact pressure. IEEE Eng. Med. Biol. Mag. 19, 106–110 (2000)

    Google Scholar 

  4. Tartiere J.M., Logeart D., Beauvais F., Chavelas C., Kesri L., Tabet J.Y., Solal A.C.: Non-invasive radial pulse wave assessment for the evaluation of left ventricular systolic performance in heart failure. Eur. J. Heart Fail. 9, 477–483 (2007)

    Article  Google Scholar 

  5. Peripheral Pulse Analyzer, Internet: Available from:http://www.larsentoubro.com/lntcorporate/uploads/product/Nivomon.pdf

  6. Padilla J.M., Berjano E.J., Siz J., Fcila L., Daz P., Merc S.: Assessment of relationships between blood pressure, pulse wave velocity and digital volume pulse. Comput. Cardiol. 33, 893–896 (2006)

    Google Scholar 

  7. Millaseau S.C., Guigui F.G., Kelly R.P.: Non-invasive assessment of the digital volume pulse: comparison with the peripheral pressure pulse. Hypertension 36, 952–956 (2000)

    Article  Google Scholar 

  8. Jayasree V.K., Shaija P.J., Manu P.J., Radhakrishnan P.: An optoelectronic sensor configuration for the determination of age related indices using blood volume pulse. Sens. Transducers J. 87(1), 39–45 (2008)

    Google Scholar 

  9. Lau, O., Chwang, A.: Relationship between wrist pulse characteristics and body conditions. In: Proceedings of the 14th Engineering Mechanics Conference (EM2000), University of Texas, Austin, May 21–25 (2000)

  10. Golden J.C., Miles D.S.: Assessment of peripheral haemodynamic using impedance plethysmography. Phys. Ther. 66(10), 1544–1547 (1986)

    Google Scholar 

  11. Webster J., Ravi Shankar T.M., Shao S.Y.: The contribution of vessel volume change and blood resistivity change to the electrical impedance pulse. IEEE Trans. Biomed. Eng. BME-32(3), 192–198 (1985)

    Article  Google Scholar 

  12. Annanthakrishnan T.S., Jindal G.D., Kataria S.K., Ananthakrishnan T.S., Jindal G.D., Sinha V., Jain R.K., Kataria S.K., Deshpande A.K.: Clinical validation of software for a versatile variability analyzer: assessment of autonomic function. J. Med. Phys. 32(3), 97–102 (2007)

    Article  Google Scholar 

  13. Kubicek W.G., Kottke E.J., Ramos F.J., Patterson R.P., Witsoe D.A., Labree J.W., Remole W.: The Minnesota impedance cardiograph theory and applications. Biomed. Eng. 9, 410–416 (1974)

    Google Scholar 

  14. Vedru J.: Electrical impedance methods for the measurement of stroke volume in man: state of the art. Acta et Comm Univ Tartuensis 974, 110–129 (1994)

    Google Scholar 

  15. Jagruti, C., Chaugule, N., Ananthakrishnan, T.S., Babu, J.P., Jindal, G.D.: Normalized dZ/dt waveform for easy assessment of peripheral blood flow. In: Proceedings of SBME-NM 2000, Bhabha Atomic Research Centre, pp. 67–73 (2000)

  16. Mohapatra S.N., Helena A.M.: Measurement of peripheral blood flow by electrical impedance technique. J. Med. Eng. Tech. 3(3), 132–137 (1979)

    Article  Google Scholar 

  17. Brown, B.H., Pryce, W.I.J., Clarke, R.G.: Impedance plethysmography: can it measure changes in limb blood flow. Med. Biol. Eng. 13, 674–681 (1975)

    Google Scholar 

  18. Yamamoto Y., Yamamoto T., Oberg P.A.: Impedance plethysmography for blood flow measurement in limbs. Med. Biol. Eng. Comput. 30, 518–524 (1992)

    Article  Google Scholar 

  19. Karamchandani, S., Desai, U.B., Merchant, S.N., Jindal, G.D.: Principal component analysis based backpropagation algorithm for diagnosis of peripheral arterial occlusive diseases. IEEE 22nd Canadian Conference Electrical and Computer Engineering, (CCECE), Newfoundland, Canada, May 3–6, pp. 482–485 (2009)

  20. Sakamoto K., Mute K., Kanai H.: Problems of impedance cardiography. Med. Biol. Eng. Comput. 17, 697–709 (1979)

    Article  Google Scholar 

  21. Shin H.S., Lee C., Lee M.: Adaptive threshold method for the peak detection of photo plethysmographic waveform. Comput. Biol. Med. 39(12), 1145–1152 (2009)

    Article  Google Scholar 

  22. Ahdesmaki, M., Lahdesmaki, H., Yli-Harja, O.: Roubust Fishers test for periodicity detection in noisy biological time series. In: Proceedings of IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS 07), Tuusula, Finland, (June 2007)

  23. Nawsupe, G., Gadre, V., Joshi, R.R.: Pulse signal analysis and characterization. Mtech Thesis, School of BioSciences and Bio Engineering, Indian Institute Of Technology, Mumbai, India, pp. 44 (2008)

  24. Jain, R.K., Jindal, G.D., Ananthakrishnan, T.S.: Central and peripheral pulse morphology for disease characterization. National Symposium on Nuclear Instrumentation (NSNI), Feb. 24–26, Bhabha Atomic Research Centre, India (2010)

  25. Malik M.: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17(3), 354–381 (1996)

    Article  Google Scholar 

  26. Akselrod S., Gordon D., Ubel F.A., Shannon D.C., Barger A.C., Cohen R.J.: Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–222 (1981)

    Article  Google Scholar 

  27. Singh B.N., Tiwari A.K.: Optimal selection of wavelet basis function applied to ECG signal denoising. Digit. Signal Process. 16, 275–287 (2006)

    Article  Google Scholar 

  28. Dogaru, R.: Fast and efficient speech signal classification with a novel nonlinear transform. In: Proceedings of International Symposium on Information Technology Convergence, pp. 43–47 (2007)

  29. Sharma L.N., Dandapat S., Mahanta A.: ECG signal denoising using higher order statistics in Wavelet subbands. Biomed. Signal Process. Control 5, 214–222 (2010)

    Article  Google Scholar 

  30. Hsu C., Lin C.: A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Netw. 13, 415–425 (2002)

    Article  Google Scholar 

  31. Ivanciuc O.: Applications of support vector machines in chemistry. Rev. Comput. Chem. 23, 291–400 (2007)

    Article  Google Scholar 

  32. Anguita, D., Ridella, S., Sterpi, D.: A new method for multiclass support vector machines. In: Proceedings of IEEE International Joint Conference Neural Networks vol. 1, pp. 407–412 (2004)

  33. Liu Y., You Z., Cao L.: A novel and quick SVM-based multi-class classifier. Pattern Recognit. 39, 2258–2264 (2006)

    Article  MATH  Google Scholar 

  34. Chapelle O., Vapnik V., Bousquet O., Mukherjee S.: Choosing multiple parameters for support vector machines. Mach. Learn. 46, 131–159 (2002)

    Article  MATH  Google Scholar 

  35. Watkins M.W., Pacheco M.: Interobserver agreement in behavioral research: importance and calculation. J. Behav. Educ. 10(4), 205–212 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Karamchandani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karamchandani, S.H., Desai, U.B., Merchant, S.N. et al. Parallel support vector architectures for taxonomy of radial pulse morphology. SIViP 7, 975–990 (2013). https://doi.org/10.1007/s11760-012-0287-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0287-3

Keywords

Navigation