Experimental and numerical analysis of transient behavior during grind-hardening of AISI 52100 | Production Engineering
Skip to main content

Experimental and numerical analysis of transient behavior during grind-hardening of AISI 52100

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The grind-hardening process is an innovative approach to substitute conventional heat treatment processes. Due to the complex physical interrelationships and the lack of understanding regarding the process behavior and layout, extensive test series are required to assure reproducible hardening results. Therefore, methods for modeling and simulation are developed and used to analyze the thermo-metallurgical and thermo-mechanical effects during grind-hardening considering aspects like characteristics of process forces and tool wear. The objective of this paper is to predict the hardening depth distribution depending on the grinding path during grind-hardening in surface grinding by using finite-element-based simulations. Input data for the simulation are grinding forces, which are calculated by using regression analysis with respect to process parameters, e.g. specific removal rate \(Q^{\prime}_w\) and equivalent grinding wheel diameter d eq . The results of the simulation and the force model are validated by means of experiments. The consideration of the transient process behavior during grind-hardening within the developed models and simulations leads to an increase of process understanding and to new approaches regarding the efficient layout of the grind-hardening process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brinksmeier E, Brockhoff T (1994) Randschicht-Wärmebehandlung durch Schleifen. HTM J Heat Treat Mat 49(5):327–330

    Google Scholar 

  2. Brockhoff T (1999) Schleifprozesse zur martensitischen Randschichthärtung von Stählen. Dissertation, University of Bremen

  3. Brockhoff T (1999) Grind-hardening: a comprehensive view. Manuf Technol (CIRP Ann) 48(1):255–260

    Article  Google Scholar 

  4. Brinksmeier E, Minke E, Wilke T (2005) Investigations on surface layer impact and grinding wheel performance for industrial grind-hardening applications. Prod Eng Res Devel (WGP Ann) 12(1):35–40

    Google Scholar 

  5. Kolkwitz B, Foeckerer T, Huntemann JW, Heinzel C, Zaeh MF, Brinksmeier E (2011) Identification and analysis of part distortion resulting from grind-hardening process using computer-based methods. In: Zoch HW, Lübben T (eds) Proceedings of the 3rd international conference on distortion engineering (IDE), pp 499–506

  6. Kolkwitz B, Foeckerer T, Heinzel C, Zaeh MF, Brinksmeier E (2012) Experimental and numerical analysis of the surface integrity resulting from outer-diameter grind-hardening. In: Procedia engineering 1st CIRP conference on surface integrity (CSI), pp 222–227

  7. Foeckerer T, Zaeh MF, Huntemann JW, Heinzel C, Brinksmeier E (2009) Simulation of part distortions resulting from heat input during grind-hardening. In: Proceedings of the NAFEMS world congress, p 37

  8. Zaeh MF, Brinksmeier E, Heinzel C, Huntemann JW, Foeckerer T (2009) Experimental and numerical identification of process parameters of grind-hardening and resulting part distortions. Prod Eng Res Devel (WGP Ann) 3(3):271–279

    Article  Google Scholar 

  9. Tawakoli T, Westkämper E, Rabiey M, Rasifard A (2007) Influence of the type of coolant lubricant in grinding with CBN tools. Int J Mach Tool Manuf 47:734–739

    Article  Google Scholar 

  10. Foeckerer T, Zaeh MF, Zhang OB (2012) A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. Int J Heat Mass Transf (accepted)

  11. Leblond JB, Devaux J (1984) A new kinetic model for anisothermal metallurgical transformation in steels including effect of austenite grain size. Acta Metall 32(1):137–146

    Article  Google Scholar 

  12. Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng 135:416–458

    Google Scholar 

  13. Avrami M (1939) Kinetics of phase change. I: General theory. J Chem Phys 7:1103–1112

    Article  Google Scholar 

  14. Avrami M (1940) Kinetics of phase change. II: Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224

    Article  Google Scholar 

  15. Avrami M (1941) Kinetics of phase change. III: Granulation, phase change, and microstructure. J Chem Phys 9:177–184

    Article  Google Scholar 

  16. Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60

    Article  Google Scholar 

  17. Leslie WC (1981) The physical metallurgy of steels. McGraw-Hill, New York

    Google Scholar 

  18. Hornbogen E, Eggeler G, Werner E (2008) Werkstoffe—Aufbau und Eigenschaften. Springer, Berlin

    Google Scholar 

  19. Orlich J, Rose A, Wiest P (1973) Atlas zur Wärmebehandlung der Stähle Band 3—Zeit-Temperatur-Austenitisierung-Schaubilder. Stahleisen, Düsseldorf

    Google Scholar 

  20. Wever F, Rose A, Peter W, Strassburg W, Rademacher L (1961) Atlas zur Wärmebehandlung der Stähle Band 1. Stahleisen, Düsseldorf

    Google Scholar 

  21. Acht C, Dalgic M, Frerichs F, Hunkel M, Irretier A, Lübben T, Surm H (2008) Ermittlung der Materialdaten zur Simulation des Durchhärtens von Komponenten aus 100Cr6—Teil 1. HTM J Heat Treat Mater 63(5):234–244

    Google Scholar 

  22. Acht C, Dalgic M, Frerichs F, Hunkel M, Irretier A, Lübben T, Surm H (2008) Ermittlung der Materialdaten zur Simulation des Durchhärtens von Komponenten aus 100Cr6—Teil 2. HTM J Heat Treat Mater 63(6):362–371

    Google Scholar 

  23. Heinzel C (1999) Methoden zur Untersuchung und Optimierung der Kühlschmierung beim Schleifen. Dissertation, University of Bremen

  24. Wittmann M (2007) Bedarfsgerechte Kühlschmierung beim Schleifen. Dissertation, University of Bremen

  25. Niemann G, Winter H, Höhn BR (2005) Maschinenelemente—Band 1: Konstruktion und Berechnung von Verbindungen, Lagern, Wellen. Springer, Berlin

    Google Scholar 

  26. Tönshoff HK, Peters J, Inasaki I, Paul T (1992) Modelling and simulation of grinding processes. Manuf Technol (CIRP Ann) 41(2):677–688

    Article  Google Scholar 

  27. Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. Manuf Technol (CIRP Ann) 55(2):667–696

    Article  Google Scholar 

  28. Heinzel C (2009) Schleifprozesse verstehen: Zum Stand der Modellbildung und Simulation sowie unterstützender experimenteller Methoden. Habilitation, University of Bremen

  29. Quan NT (1988) The prediction sum of squares as a general measure for regression diagnostics. J Bus Econ Stat 6(4):501–504

    Google Scholar 

  30. Fahrmeir L, Kneib T, Lang S (2009) Regression—Modelle, Methoden und Anwendungen. Springer, Berlin

    MATH  Google Scholar 

  31. Backhaus K, Erichson B, Plinke W, Weiber R (2011) Multivariante Analysemethoden—Eine anwendungsorientierte Einführung. Springer, Berlin

    Google Scholar 

  32. Kleppmann W (2011) Taschenbuch Versuchsplanung—Produkte und Prozesse optimieren. Hanser, Munich

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for funding the project BR 825/48-2 / ZA 288/17-2: “Simulation of the Grind-Hardening Process”. The results presented in this paper were gained in the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Foeckerer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foeckerer, T., Kolkwitz, B., Heinzel, C. et al. Experimental and numerical analysis of transient behavior during grind-hardening of AISI 52100. Prod. Eng. Res. Devel. 6, 559–568 (2012). https://doi.org/10.1007/s11740-012-0414-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0414-6

Keywords