Abstract
The grind-hardening process is an innovative approach to substitute conventional heat treatment processes. Due to the complex physical interrelationships and the lack of understanding regarding the process behavior and layout, extensive test series are required to assure reproducible hardening results. Therefore, methods for modeling and simulation are developed and used to analyze the thermo-metallurgical and thermo-mechanical effects during grind-hardening considering aspects like characteristics of process forces and tool wear. The objective of this paper is to predict the hardening depth distribution depending on the grinding path during grind-hardening in surface grinding by using finite-element-based simulations. Input data for the simulation are grinding forces, which are calculated by using regression analysis with respect to process parameters, e.g. specific removal rate \(Q^{\prime}_w\) and equivalent grinding wheel diameter d eq . The results of the simulation and the force model are validated by means of experiments. The consideration of the transient process behavior during grind-hardening within the developed models and simulations leads to an increase of process understanding and to new approaches regarding the efficient layout of the grind-hardening process.
Similar content being viewed by others
References
Brinksmeier E, Brockhoff T (1994) Randschicht-Wärmebehandlung durch Schleifen. HTM J Heat Treat Mat 49(5):327–330
Brockhoff T (1999) Schleifprozesse zur martensitischen Randschichthärtung von Stählen. Dissertation, University of Bremen
Brockhoff T (1999) Grind-hardening: a comprehensive view. Manuf Technol (CIRP Ann) 48(1):255–260
Brinksmeier E, Minke E, Wilke T (2005) Investigations on surface layer impact and grinding wheel performance for industrial grind-hardening applications. Prod Eng Res Devel (WGP Ann) 12(1):35–40
Kolkwitz B, Foeckerer T, Huntemann JW, Heinzel C, Zaeh MF, Brinksmeier E (2011) Identification and analysis of part distortion resulting from grind-hardening process using computer-based methods. In: Zoch HW, Lübben T (eds) Proceedings of the 3rd international conference on distortion engineering (IDE), pp 499–506
Kolkwitz B, Foeckerer T, Heinzel C, Zaeh MF, Brinksmeier E (2012) Experimental and numerical analysis of the surface integrity resulting from outer-diameter grind-hardening. In: Procedia engineering 1st CIRP conference on surface integrity (CSI), pp 222–227
Foeckerer T, Zaeh MF, Huntemann JW, Heinzel C, Brinksmeier E (2009) Simulation of part distortions resulting from heat input during grind-hardening. In: Proceedings of the NAFEMS world congress, p 37
Zaeh MF, Brinksmeier E, Heinzel C, Huntemann JW, Foeckerer T (2009) Experimental and numerical identification of process parameters of grind-hardening and resulting part distortions. Prod Eng Res Devel (WGP Ann) 3(3):271–279
Tawakoli T, Westkämper E, Rabiey M, Rasifard A (2007) Influence of the type of coolant lubricant in grinding with CBN tools. Int J Mach Tool Manuf 47:734–739
Foeckerer T, Zaeh MF, Zhang OB (2012) A three-dimensional analytical model to predict the thermo-metallurgical effects within the surface layer during grinding and grind-hardening. Int J Heat Mass Transf (accepted)
Leblond JB, Devaux J (1984) A new kinetic model for anisothermal metallurgical transformation in steels including effect of austenite grain size. Acta Metall 32(1):137–146
Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Min Metall Eng 135:416–458
Avrami M (1939) Kinetics of phase change. I: General theory. J Chem Phys 7:1103–1112
Avrami M (1940) Kinetics of phase change. II: Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224
Avrami M (1941) Kinetics of phase change. III: Granulation, phase change, and microstructure. J Chem Phys 9:177–184
Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60
Leslie WC (1981) The physical metallurgy of steels. McGraw-Hill, New York
Hornbogen E, Eggeler G, Werner E (2008) Werkstoffe—Aufbau und Eigenschaften. Springer, Berlin
Orlich J, Rose A, Wiest P (1973) Atlas zur Wärmebehandlung der Stähle Band 3—Zeit-Temperatur-Austenitisierung-Schaubilder. Stahleisen, Düsseldorf
Wever F, Rose A, Peter W, Strassburg W, Rademacher L (1961) Atlas zur Wärmebehandlung der Stähle Band 1. Stahleisen, Düsseldorf
Acht C, Dalgic M, Frerichs F, Hunkel M, Irretier A, Lübben T, Surm H (2008) Ermittlung der Materialdaten zur Simulation des Durchhärtens von Komponenten aus 100Cr6—Teil 1. HTM J Heat Treat Mater 63(5):234–244
Acht C, Dalgic M, Frerichs F, Hunkel M, Irretier A, Lübben T, Surm H (2008) Ermittlung der Materialdaten zur Simulation des Durchhärtens von Komponenten aus 100Cr6—Teil 2. HTM J Heat Treat Mater 63(6):362–371
Heinzel C (1999) Methoden zur Untersuchung und Optimierung der Kühlschmierung beim Schleifen. Dissertation, University of Bremen
Wittmann M (2007) Bedarfsgerechte Kühlschmierung beim Schleifen. Dissertation, University of Bremen
Niemann G, Winter H, Höhn BR (2005) Maschinenelemente—Band 1: Konstruktion und Berechnung von Verbindungen, Lagern, Wellen. Springer, Berlin
Tönshoff HK, Peters J, Inasaki I, Paul T (1992) Modelling and simulation of grinding processes. Manuf Technol (CIRP Ann) 41(2):677–688
Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Klocke F, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modeling and simulation of grinding processes. Manuf Technol (CIRP Ann) 55(2):667–696
Heinzel C (2009) Schleifprozesse verstehen: Zum Stand der Modellbildung und Simulation sowie unterstützender experimenteller Methoden. Habilitation, University of Bremen
Quan NT (1988) The prediction sum of squares as a general measure for regression diagnostics. J Bus Econ Stat 6(4):501–504
Fahrmeir L, Kneib T, Lang S (2009) Regression—Modelle, Methoden und Anwendungen. Springer, Berlin
Backhaus K, Erichson B, Plinke W, Weiber R (2011) Multivariante Analysemethoden—Eine anwendungsorientierte Einführung. Springer, Berlin
Kleppmann W (2011) Taschenbuch Versuchsplanung—Produkte und Prozesse optimieren. Hanser, Munich
Acknowledgments
The authors would like to thank the German Research Foundation (DFG) for funding the project BR 825/48-2 / ZA 288/17-2: “Simulation of the Grind-Hardening Process”. The results presented in this paper were gained in the course of this project.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Foeckerer, T., Kolkwitz, B., Heinzel, C. et al. Experimental and numerical analysis of transient behavior during grind-hardening of AISI 52100. Prod. Eng. Res. Devel. 6, 559–568 (2012). https://doi.org/10.1007/s11740-012-0414-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11740-012-0414-6