Abstract
This article outlines on-going activities at the RWTH Aachen University aiming at a standardized, modular, extendable and open simulation platform for materials processing. This platform on the one hand facilitates the information exchange between different simulation tools and thus strongly reduces the effort to design/re-design production processes. On the other hand, tracking of simulation results along the entire production chain provides new insights into mechanisms, which cannot be explained on the basis of individual simulations. Respective simulation chains provide e.g. the basis for the determination of materials and component properties, like e.g. distortions, for an improved product quality, for more efficient and more reliable production processes and many further aspects. After a short introduction to the platform concept, actual examples for different test case scenarios will be presented and discussed.











Similar content being viewed by others
References
National research council (2008) :integrated computational materials engineering: a transformational discipline for improved competitiveness and National security; National Academic Press, Washington, DC ISBN: 0-309-12000-4
Gottstein G (ed) (2007) Integral materials modelling: towards physics based through-process models, Wiley—VCH Verlag. Weinheim. ISBN:978-3-527-31711-0
Schmitz GJ, Prahl U (2009) Toward a virtual platform for materials processing. JOM 61(5):26
Schroeder W, Martin K, Lorensen B (2006) The visualization toolkit—an object—oriented approach to 3D Graphics, 4th Ed, Kitware, Inc. www.vtk.org
Benke S et al Definition of a standardized data format for the exchange of simulation data. Available online at: www.aixvipmap.de
Schilberg D, Gramatke A, Henning K (2008) Semantic interconnection of distributed numerical simulations via SOA. Proceedings of the world congress on engineering and computer science, San Francisco, USA, pp 894–897. ISBN:978-988-98671-0-2
Cerfontaine P, Beer T, Kuhlen T, Bischof C (2008) Towards a flexible and distributed simulation platform computational science and its applications—ICCSA, Springer lecture notes in computer science LNCS 5072 Part1
Arping T, Heesel B, Kashko T, Laschet G, Baranowski T (To be published)
Kuckhoff B, Benke S, Kashko T (To be published)
Benke S, Laschet G (2008) On the interplay between the solid deformation and fluid flow during solidification of a metallic alloy. Comput Mat Sci 43(1):92
Benke S, Rudnizki J, Suwanpinij P, Prahl U (2008) Modeling hot rolling: a study on the microstructural changes during the Austenite to Ferrite phase transformation in dual phase steels. Presented at 8th World congress on computational mechanics (WCCM8), June 30–July 5 Venice, Italy
JB Leblond et al (1984) Acta Metall 32:137
MICRESS®: The MICRostructure evolution simulation software: http://www.micress.de
Kopp R, Horst C (2004) Modelling of elastic effects in forming processes. Particularly the rolling process. AIP Conf Proc 712:375–381
Abaqus, Dassault Systèmes Simulia Corp. (2009) Standard user manual, version 6.9, Hibbit, Karlsson and Sorensen, Providence, RI, USA
Laschet G, Apel M (2010) Thermo-elastic homogenization of 3-D steel microstructure simulated by phase-field method. Steel Res Int 81(8):637
Nikolussi M (2008) Extreme elastic anisotropy of cementite, Fe3C: First-principles calculations and experimental evidence. Scripta Mater 59:814–817
Zhang MX, Kelly PM (1997) Accurate orientation relationships between ferrite and cementite in pearlite. Scripta Materialia 37(12):2009
Rodriguez R, Gutierrez I (2003) A unified formulation to predict the tensile curves of steels with different microstructures. Materials Science Forum 426–432:4525
Laschet G, Quade H, Henke T, Dickert HH, Bambach M (2010) Comparison of elasto-plastic multi-scale analyses of the U-forming process of a steel line-pipe tube, In:Proceedings of the IV European Conference on Computational mechanics, Paris, France
Quade H, Fayek P, Laschet G, Henke T (2010) Multi-scale Simulation of the U- and O-forming of a Line-pipe Tube. Presented at the First Conference on Multiphysics Simulation, Bonn, Germany to appear in “Int J Multiphys”
Guitierrez I, Altuna MA (2008) Work-hardening of ferrite and microstructure-based modeling of its mechanical behaviour under tension. Acta Mater 56:4682
Bleck W, Reisgen U, Mokrov O, Rossiter E, Rieger T (2010) Methodology for Thermomechanical Simulation and Validation of Mechanical Weld-Seam Properties. Adv Eng Mater 12(3):147–152
Rieger T, Gazdag S, Prahl U, Mokrov O, Rossiter E, Reisgen U (2010) Simulation of Welding and Distortion in Ship Building. Adv Eng Mater 12(3):153–157. http://www.esi-group.com/products/welding
Reisgen U, Schleser M, Mokrov O, Ahmed E, Schmidt A, Rossiter E (2009) Integrative Berechnung von Verzug und Eigenspannung auf Basis realer Schweißparameter. Presented at SYSWELD Forum. Weimar, Germany
Apel M, Böttger B (2009) Phase-field simulation of the microstructure formation in the weld pool and in the heat affected zone during welding of steel. Presented at the 2nd symposium on phase-field modelling in materials science, Aachen
Grosch J, Liedtke D, Kallhardt K, Tacke D, Hoffmann R, Luiten CH, Eysell FW (1981) Gasaufkohlen bei Temperaturen oberhalb 950°C in konventionellen Öfen und in Vakuumöfen. HTM Härterei-Techn Mitt 36(5):262
Pacheco JL, Krauss G (1990) Gefüge und Biegewechselfestigkeit einsatzgehärteter Stähle. HTM Härterei-Techn Mitt 45(2):77
Hippenstiel F, Bleck W, Clausen B, Hoffmann F, Kohlmann R (2002) Innovative Einsatzstähle als maßgeschneiderte Werkstofflösung zur Hochtemperaturaufkohlung von Getriebekomponenten. HTM Härterei-Techn Mitt 27(4):290–298
Klenke K, Kohlman R (2005) Einsatzstähle in ihrer Feinkornbeständigkeit, heute und morgen. HTM Z Werkst Wärmebehand Fertigung 60(5):260
Kleff J, Hock S, Kellermann I, Fleischmann M, Küper A (2005) Hochtemperatur-Aufkohlen: Einflüsse auf das Verzugsverhalten schwerer Getriebebauteile. HTM Z Werkst Wärmebeh Fertigung 60(6):311
Wise JP, Matlock DK (2000) Bending Fatigue of Carburized Steels: a statistical analysis of process and microstructural parameters. SAE 2000 World Congress, Detroit
Prinz C, Clausen B, Hoffmann F, Kohlmann R, Zoch HW (2006) Metallurgical influence on distortion of the case-hardening steel 20MnCr5. Materialwissenschaft und Werkstofftechnik 37(1):29
Rudnizki J, Zeislmair B, Prahl U, Bleck W (2010) Thermodynamical simulation of carbon profiles and precipitation evolution during high temperature case hardening. Steel Res Int 81(6):472
Kozeschnik E, Svoboda J, Fischer FD, Fratzl P (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: numerical solution and application. Mater Sci Eng A 385(1–2):157
Apel M, Böttger B, Rudnizki J, Schaffnit P, Steinbach I (2009) Grain growth simulations including particle pinning using the multiphase-field concept. ISIJ 49(7):1024–1029
Rudnizki J, Zeislmair B, Prahl U, Bleck W (2010) Prediction of abnormal grain growth during high temperature treatment. Comp Mater Sci 49(2):209
Jansen U (2009) Simulation des Schweißens kleiner Bauteile”. Diplomarbeit, Lehrstuhl: Nichtlineare Dynamik der Laserfertigungsverfahren, RWTH Aachen
Apel M, Benke S, Steinbach I (2009) Virtual dilatometer curves and effective young’s modulus of a 3D multiphase structure calculated by the phase-field method. Comp Mater Sci 45(3):589
Benke S (2008) A Multi-phase-field model including inelastic deformation for solid state transformations. Proceedings in Applied Mathematics and Mechanic 8(1):10407
Acknowledgments
The present article is based on on-going work of a consortium of the following institutes at the RWTH Aachen University: Foundry Institute (GI), Institute for Ferrous Metallurgy (IEHK), Welding and Joining Institute (ISF), Surface Engineering Institute (IOT), Institute for Metal Forming (IBF), Institute for Plastics Processing (IKV), Institute for Scientific Computing (SC), Department of Information Management in Mechanical Engineering (ZLW/IMA), Institute for Textile Technology (ITA), Fraunhofer Institute for Lasertechnology (ILT/NLD) and ACCESS. Funding of the depicted research by the German Research Foundation (DFG) in the frame of the Cluster of Excellence “Integrative Production in High Wage Countries” is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmitz, G.J., Benke, S., Laschet, G. et al. Towards integrative computational materials engineering of steel components. Prod. Eng. Res. Devel. 5, 373–382 (2011). https://doi.org/10.1007/s11740-011-0322-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11740-011-0322-1