Towards integrative computational materials engineering of steel components | Production Engineering Skip to main content
Log in

Towards integrative computational materials engineering of steel components

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This article outlines on-going activities at the RWTH Aachen University aiming at a standardized, modular, extendable and open simulation platform for materials processing. This platform on the one hand facilitates the information exchange between different simulation tools and thus strongly reduces the effort to design/re-design production processes. On the other hand, tracking of simulation results along the entire production chain provides new insights into mechanisms, which cannot be explained on the basis of individual simulations. Respective simulation chains provide e.g. the basis for the determination of materials and component properties, like e.g. distortions, for an improved product quality, for more efficient and more reliable production processes and many further aspects. After a short introduction to the platform concept, actual examples for different test case scenarios will be presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. www.production-research.de

  2. National research council (2008) :integrated computational materials engineering: a transformational discipline for improved competitiveness and National security; National Academic Press, Washington, DC ISBN: 0-309-12000-4

  3. Gottstein G (ed) (2007) Integral materials modelling: towards physics based through-process models, Wiley—VCH Verlag. Weinheim. ISBN:978-3-527-31711-0

  4. Schmitz GJ, Prahl U (2009) Toward a virtual platform for materials processing. JOM 61(5):26

    Article  Google Scholar 

  5. Schroeder W, Martin K, Lorensen B (2006) The visualization toolkit—an object—oriented approach to 3D Graphics, 4th Ed, Kitware, Inc. www.vtk.org

  6. Benke S et al Definition of a standardized data format for the exchange of simulation data. Available online at: www.aixvipmap.de

  7. Schilberg D, Gramatke A, Henning K (2008) Semantic interconnection of distributed numerical simulations via SOA. Proceedings of the world congress on engineering and computer science, San Francisco, USA, pp 894–897. ISBN:978-988-98671-0-2

  8. Cerfontaine P, Beer T, Kuhlen T, Bischof C (2008) Towards a flexible and distributed simulation platform computational science and its applications—ICCSA, Springer lecture notes in computer science LNCS 5072 Part1

  9. Arping T, Heesel B, Kashko T, Laschet G, Baranowski T (To be published)

  10. Kuckhoff B, Benke S, Kashko T (To be published)

  11. Benke S, Laschet G (2008) On the interplay between the solid deformation and fluid flow during solidification of a metallic alloy. Comput Mat Sci 43(1):92

    Article  Google Scholar 

  12. Benke S, Rudnizki J, Suwanpinij P, Prahl U (2008) Modeling hot rolling: a study on the microstructural changes during the Austenite to Ferrite phase transformation in dual phase steels. Presented at 8th World congress on computational mechanics (WCCM8), June 30–July 5 Venice, Italy

  13. JB Leblond et al (1984) Acta Metall 32:137

    Google Scholar 

  14. MICRESS®: The MICRostructure evolution simulation software: http://www.micress.de

  15. Kopp R, Horst C (2004) Modelling of elastic effects in forming processes. Particularly the rolling process. AIP Conf Proc 712:375–381

    Article  Google Scholar 

  16. Abaqus, Dassault Systèmes Simulia Corp. (2009) Standard user manual, version 6.9, Hibbit, Karlsson and Sorensen, Providence, RI, USA

  17. Laschet G, Apel M (2010) Thermo-elastic homogenization of 3-D steel microstructure simulated by phase-field method. Steel Res Int 81(8):637

    Article  Google Scholar 

  18. Nikolussi M (2008) Extreme elastic anisotropy of cementite, Fe3C: First-principles calculations and experimental evidence. Scripta Mater 59:814–817

    Article  Google Scholar 

  19. Zhang MX, Kelly PM (1997) Accurate orientation relationships between ferrite and cementite in pearlite. Scripta Materialia 37(12):2009

    Article  Google Scholar 

  20. Rodriguez R, Gutierrez I (2003) A unified formulation to predict the tensile curves of steels with different microstructures. Materials Science Forum 426–432:4525

    Article  Google Scholar 

  21. Laschet G, Quade H, Henke T, Dickert HH, Bambach M (2010) Comparison of elasto-plastic multi-scale analyses of the U-forming process of a steel line-pipe tube, In:Proceedings of the IV European Conference on Computational mechanics, Paris, France

  22. Quade H, Fayek P, Laschet G, Henke T (2010) Multi-scale Simulation of the U- and O-forming of a Line-pipe Tube. Presented at the First Conference on Multiphysics Simulation, Bonn, Germany to appear in “Int J Multiphys”

  23. Guitierrez I, Altuna MA (2008) Work-hardening of ferrite and microstructure-based modeling of its mechanical behaviour under tension. Acta Mater 56:4682

    Article  Google Scholar 

  24. Bleck W, Reisgen U, Mokrov O, Rossiter E, Rieger T (2010) Methodology for Thermomechanical Simulation and Validation of Mechanical Weld-Seam Properties. Adv Eng Mater 12(3):147–152

    Article  Google Scholar 

  25. Rieger T, Gazdag S, Prahl U, Mokrov O, Rossiter E, Reisgen U (2010) Simulation of Welding and Distortion in Ship Building. Adv Eng Mater 12(3):153–157. http://www.esi-group.com/products/welding

  26. Reisgen U, Schleser M, Mokrov O, Ahmed E, Schmidt A, Rossiter E (2009) Integrative Berechnung von Verzug und Eigenspannung auf Basis realer Schweißparameter. Presented at SYSWELD Forum. Weimar, Germany

  27. Apel M, Böttger B (2009) Phase-field simulation of the microstructure formation in the weld pool and in the heat affected zone during welding of steel. Presented at the 2nd symposium on phase-field modelling in materials science, Aachen

  28. Grosch J, Liedtke D, Kallhardt K, Tacke D, Hoffmann R, Luiten CH, Eysell FW (1981) Gasaufkohlen bei Temperaturen oberhalb 950°C in konventionellen Öfen und in Vakuumöfen. HTM Härterei-Techn Mitt 36(5):262

    Google Scholar 

  29. Pacheco JL, Krauss G (1990) Gefüge und Biegewechselfestigkeit einsatzgehärteter Stähle. HTM Härterei-Techn Mitt 45(2):77

    Google Scholar 

  30. Hippenstiel F, Bleck W, Clausen B, Hoffmann F, Kohlmann R (2002) Innovative Einsatzstähle als maßgeschneiderte Werkstofflösung zur Hochtemperaturaufkohlung von Getriebekomponenten. HTM Härterei-Techn Mitt 27(4):290–298

    Google Scholar 

  31. Klenke K, Kohlman R (2005) Einsatzstähle in ihrer Feinkornbeständigkeit, heute und morgen. HTM Z Werkst Wärmebehand Fertigung 60(5):260

    Google Scholar 

  32. Kleff J, Hock S, Kellermann I, Fleischmann M, Küper A (2005) Hochtemperatur-Aufkohlen: Einflüsse auf das Verzugsverhalten schwerer Getriebebauteile. HTM Z Werkst Wärmebeh Fertigung 60(6):311

    Google Scholar 

  33. Wise JP, Matlock DK (2000) Bending Fatigue of Carburized Steels: a statistical analysis of process and microstructural parameters. SAE 2000 World Congress, Detroit

  34. Prinz C, Clausen B, Hoffmann F, Kohlmann R, Zoch HW (2006) Metallurgical influence on distortion of the case-hardening steel 20MnCr5. Materialwissenschaft und Werkstofftechnik 37(1):29

    Article  Google Scholar 

  35. Rudnizki J, Zeislmair B, Prahl U, Bleck W (2010) Thermodynamical simulation of carbon profiles and precipitation evolution during high temperature case hardening. Steel Res Int 81(6):472

    Article  Google Scholar 

  36. Kozeschnik E, Svoboda J, Fischer FD, Fratzl P (2004) Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: numerical solution and application. Mater Sci Eng A 385(1–2):157

    Google Scholar 

  37. Apel M, Böttger B, Rudnizki J, Schaffnit P, Steinbach I (2009) Grain growth simulations including particle pinning using the multiphase-field concept. ISIJ 49(7):1024–1029

    Article  Google Scholar 

  38. Rudnizki J, Zeislmair B, Prahl U, Bleck W (2010) Prediction of abnormal grain growth during high temperature treatment. Comp Mater Sci 49(2):209

    Article  Google Scholar 

  39. Jansen U (2009) Simulation des Schweißens kleiner Bauteile”. Diplomarbeit, Lehrstuhl: Nichtlineare Dynamik der Laserfertigungsverfahren, RWTH Aachen

  40. www.magmasoft.de

  41. Apel M, Benke S, Steinbach I (2009) Virtual dilatometer curves and effective young’s modulus of a 3D multiphase structure calculated by the phase-field method. Comp Mater Sci 45(3):589

    Article  Google Scholar 

  42. Benke S (2008) A Multi-phase-field model including inelastic deformation for solid state transformations. Proceedings in Applied Mathematics and Mechanic 8(1):10407

    Article  Google Scholar 

Download references

Acknowledgments

The present article is based on on-going work of a consortium of the following institutes at the RWTH Aachen University: Foundry Institute (GI), Institute for Ferrous Metallurgy (IEHK), Welding and Joining Institute (ISF), Surface Engineering Institute (IOT), Institute for Metal Forming (IBF), Institute for Plastics Processing (IKV), Institute for Scientific Computing (SC), Department of Information Management in Mechanical Engineering (ZLW/IMA), Institute for Textile Technology (ITA), Fraunhofer Institute for Lasertechnology (ILT/NLD) and ACCESS. Funding of the depicted research by the German Research Foundation (DFG) in the frame of the Cluster of Excellence “Integrative Production in High Wage Countries” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Schmitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, G.J., Benke, S., Laschet, G. et al. Towards integrative computational materials engineering of steel components. Prod. Eng. Res. Devel. 5, 373–382 (2011). https://doi.org/10.1007/s11740-011-0322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-011-0322-1

Keywords

Navigation