Abstract
The electron beam technology offers a wide range of possibilities for the use with industrial production processes. In addition to welding applications the fast beam deflection with electromagnetic coils can be used within additive layer manufacturing to gain a higher scanning speed and to realize new deflection figures compared to laser based systems. Therefore, the electron beam sintering exhibits a high application potential in order to achieve higher build-up rates. After explaining the functional principle and the relating process steps the examination of different scanning strategies is presented. By means of part analysis and visual observation, determining effects could be identified. In the following, the analysis of temperature profiles by means of thermal simulation was carried out in order to optimize the sintering of one layer. Based on these results the adaptation of process parameters could be derived. It is shown that the scanning strategies have a significant influence on the process and the part quality respectively.
Similar content being viewed by others
References
Zäh MF (2003) Rapid manufacturing—Strategie für die wirtschaftliche Kleinserienfertigung. In: Reinhart G, Zäh MF (eds) Marktchance individualisierung. Springer, Berlin, pp 235–250
Meindl M (2005) Beitrag zur Entwicklung generativer Fertigungsverfahren für das rapid manufacturing. Dissertation Technische Universität München
Hopkinson N, Hague RJM, Dickens PM (2006) Rapid manufacturing: an industrial revolution for the digital age. Wiley, Chichester
Zäh MF, Sigl M, Seefried M, Hagemann F, Kahnert M, Müller A (2006) Meindl M Wirtschaftliche Fertigung mit Rapid-Technologien: Anwender-Leitfaden zur Auswahl geeigneter Verfahren, 1st edn. Carl Hanser, München
Gebhardt A (2000) Rapid prototyping: Werkzeuge für die schnelle Produktentstehung, 2nd edn. Carl Hanser, München
Over C (2003) Laserschmelzen—Ein gereratives Fertigungsverfahren für die Serienproduktion, Rapid Manufacturing—Mit Rapid Technologien zum Aufschwung, pp 4-1–4-7
Wohlers T (2007) Wohlers report 2007: state of the industry annual worldwide progress report. Wohlers Associates, Fort Collins
Abdel Ghany K, Moustafa SF (2006) Comparison between the products of four RPM systems for metals. Rapid Prototyp J 12(2):86–94. doi:10.1108/13552540610652429
Sigl M (2008) Ein Beitrag zur Entwicklung des Elektronenstrahlsinterns. Dissertation Technische Universität München
Dobeneck D, Löwer T, Mehnhard C (2002) Entwicklungspotenziale der thermischen Materialbearbeitung mit Elektronenstrahlen im Vergleich zu Laserstrahlen, Laserstrahlfügen : Prozesse, Systeme, Anwendungen, Trends; Beiträge zum 4. Laser-Anwenderforum Bremen, pp 35–44
Dobeneck D, Löwer T, Adam V (2001) Elektronenstrahlschweißen: das Verfahren und seine industrielle Anwendung für höchste Produktivität, 1st edn. Moderne Industrie, Landsberg/Lech
Patent WO (1994) 1994026446A1 method and device for producing three-dimensional bodies. Larson Ralf. Pr.: SE9301647
Taminger KMB, Hafley RA, Dicus DL (2002) An enabling technology for future space missions. In: Proceedings of the 2002 international conference on metal powder deposition for rapid manufacturing, pp 51–61
Davé VR (1995) Electron beam assisted materials fabrication. Dissertation Massachusetts Institude of Technology (MIT)
Applications. http://www.arcam.com/applications/index.asp. Accessed 4 Jan 2008
Cormier D (2005) Characterization of H13 steel produced via electron beam melting. Rapid Prototyp J 2004(10):35–41
Mahale T, Cormier D, Harrysson O, Ervin K (2007) Advances in electron beam melting of aluminium alloys. In: Solid freeform fabrication symposium proceedings, 18/pp 312–323
Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA II (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C 28(3):366–373. doi:10.1016/j.msec.2007.04.022
Qi HB, Yan YN, Lin F, He W, Zhang RJ (2006) Direct metal part forming of 316L stainless steel powder by electron beam selective melting. In: Proceedings of the institution of mechanical engineers—Part B—engineering manufacture, 202/11: pp 1845–1853
Sigl M, Lutzmann S, Zäh MF (2006) Transient physical effects in electron beam sintering. In: Solid freeform fabrication symposium proceedings, 17/pp 397–405
Heinl P, Rottmair A, Körner C, Singer RF (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9(5):360–364. doi:10.1002/adem.200700025
Kruth JP, Kumar S, Vaerenbergh JV (2005) Study of laser-sinterability of ferro-based powders. Rapid Prototyp J 11(5):287–292. doi:10.1108/13552540510623594
Branner G, Sigl M, Lutzmann S (2006) Optimierung von Scanstrategie und Verzugsverhalten für generative, Metall verarbeitende Fertigungsverfahren, 24th CADFEM Users’ Meeting. International Congress on FEM Technology
Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Mater Trans B 15(2):299–305. doi:10.1007/BF02667333
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zaeh, M.F., Kahnert, M. The effect of scanning strategies on electron beam sintering. Prod. Eng. Res. Devel. 3, 217–224 (2009). https://doi.org/10.1007/s11740-009-0157-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11740-009-0157-1