The effect of scanning strategies on electron beam sintering | Production Engineering Skip to main content
Log in

The effect of scanning strategies on electron beam sintering

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The electron beam technology offers a wide range of possibilities for the use with industrial production processes. In addition to welding applications the fast beam deflection with electromagnetic coils can be used within additive layer manufacturing to gain a higher scanning speed and to realize new deflection figures compared to laser based systems. Therefore, the electron beam sintering exhibits a high application potential in order to achieve higher build-up rates. After explaining the functional principle and the relating process steps the examination of different scanning strategies is presented. By means of part analysis and visual observation, determining effects could be identified. In the following, the analysis of temperature profiles by means of thermal simulation was carried out in order to optimize the sintering of one layer. Based on these results the adaptation of process parameters could be derived. It is shown that the scanning strategies have a significant influence on the process and the part quality respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zäh MF (2003) Rapid manufacturing—Strategie für die wirtschaftliche Kleinserienfertigung. In: Reinhart G, Zäh MF (eds) Marktchance individualisierung. Springer, Berlin, pp 235–250

    Google Scholar 

  2. Meindl M (2005) Beitrag zur Entwicklung generativer Fertigungsverfahren für das rapid manufacturing. Dissertation Technische Universität München

  3. Hopkinson N, Hague RJM, Dickens PM (2006) Rapid manufacturing: an industrial revolution for the digital age. Wiley, Chichester

    Google Scholar 

  4. Zäh MF, Sigl M, Seefried M, Hagemann F, Kahnert M, Müller A (2006) Meindl M Wirtschaftliche Fertigung mit Rapid-Technologien: Anwender-Leitfaden zur Auswahl geeigneter Verfahren, 1st edn. Carl Hanser, München

    Google Scholar 

  5. Gebhardt A (2000) Rapid prototyping: Werkzeuge für die schnelle Produktentstehung, 2nd edn. Carl Hanser, München

    Google Scholar 

  6. Over C (2003) Laserschmelzen—Ein gereratives Fertigungsverfahren für die Serienproduktion, Rapid Manufacturing—Mit Rapid Technologien zum Aufschwung, pp 4-1–4-7

  7. Wohlers T (2007) Wohlers report 2007: state of the industry annual worldwide progress report. Wohlers Associates, Fort Collins

    Google Scholar 

  8. Abdel Ghany K, Moustafa SF (2006) Comparison between the products of four RPM systems for metals. Rapid Prototyp J 12(2):86–94. doi:10.1108/13552540610652429

    Article  Google Scholar 

  9. Sigl M (2008) Ein Beitrag zur Entwicklung des Elektronenstrahlsinterns. Dissertation Technische Universität München

  10. Dobeneck D, Löwer T, Mehnhard C (2002) Entwicklungspotenziale der thermischen Materialbearbeitung mit Elektronenstrahlen im Vergleich zu Laserstrahlen, Laserstrahlfügen : Prozesse, Systeme, Anwendungen, Trends; Beiträge zum 4. Laser-Anwenderforum Bremen, pp 35–44

  11. Dobeneck D, Löwer T, Adam V (2001) Elektronenstrahlschweißen: das Verfahren und seine industrielle Anwendung für höchste Produktivität, 1st edn. Moderne Industrie, Landsberg/Lech

    Google Scholar 

  12. Patent WO (1994) 1994026446A1 method and device for producing three-dimensional bodies. Larson Ralf. Pr.: SE9301647

  13. Taminger KMB, Hafley RA, Dicus DL (2002) An enabling technology for future space missions. In: Proceedings of the 2002 international conference on metal powder deposition for rapid manufacturing, pp 51–61

  14. Davé VR (1995) Electron beam assisted materials fabrication. Dissertation Massachusetts Institude of Technology (MIT)

  15. Applications. http://www.arcam.com/applications/index.asp. Accessed 4 Jan 2008

  16. Cormier D (2005) Characterization of H13 steel produced via electron beam melting. Rapid Prototyp J 2004(10):35–41

    Google Scholar 

  17. Mahale T, Cormier D, Harrysson O, Ervin K (2007) Advances in electron beam melting of aluminium alloys. In: Solid freeform fabrication symposium proceedings, 18/pp 312–323

  18. Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA II (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C 28(3):366–373. doi:10.1016/j.msec.2007.04.022

    Article  Google Scholar 

  19. Qi HB, Yan YN, Lin F, He W, Zhang RJ (2006) Direct metal part forming of 316L stainless steel powder by electron beam selective melting. In: Proceedings of the institution of mechanical engineers—Part B—engineering manufacture, 202/11: pp 1845–1853

  20. Sigl M, Lutzmann S, Zäh MF (2006) Transient physical effects in electron beam sintering. In: Solid freeform fabrication symposium proceedings, 17/pp 397–405

  21. Heinl P, Rottmair A, Körner C, Singer RF (2007) Cellular titanium by selective electron beam melting. Adv Eng Mater 9(5):360–364. doi:10.1002/adem.200700025

    Article  Google Scholar 

  22. Kruth JP, Kumar S, Vaerenbergh JV (2005) Study of laser-sinterability of ferro-based powders. Rapid Prototyp J 11(5):287–292. doi:10.1108/13552540510623594

    Article  Google Scholar 

  23. Branner G, Sigl M, Lutzmann S (2006) Optimierung von Scanstrategie und Verzugsverhalten für generative, Metall verarbeitende Fertigungsverfahren, 24th CADFEM Users’ Meeting. International Congress on FEM Technology

  24. Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Mater Trans B 15(2):299–305. doi:10.1007/BF02667333

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kahnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaeh, M.F., Kahnert, M. The effect of scanning strategies on electron beam sintering. Prod. Eng. Res. Devel. 3, 217–224 (2009). https://doi.org/10.1007/s11740-009-0157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-009-0157-1

Keywords

Navigation