A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets | Production Engineering Skip to main content
Log in

A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In order to get a deeper understanding of laser beam welding, a process model was developed at the Chair of Manufacturing Technology. It is based on the continuity equation, the equation of heat conduction and the Navier–Stokes equation. The model includes effects of Fresnel absorption, vapor pressure, surface tension, melting and evaporation enthalpy and energy loss due to evaporating material. This paper presents the results of a three-dimensional, transient finite volume simulation of a laser beam deep penetration welding process based on this model. The simulations show periodic keyhole oscillations and the complex fluid dynamics of the melt pool. A comparison of the evaporation rates calculated from the simulations and the experimentally observed process emissions shows good correlation. Furthermore, the simulations show pore formation at higher feed rates, the influence of a gap on the welding process and give an explanation for the welding behavior of zinc coated steel sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ye X-H, Chen X (2002) Three-dimensional modeling of heat transfer and fluid flow in laser full-penetration welding. J Phys D Appl Phys 35:1049–1056. doi:10.1088/0022-3727/35/10/313

    Article  Google Scholar 

  2. Ki H, Mohanty PS, Mazumder J (2001) Modelling of high-density laser–material interaction using fast level set method. J Phys D Appl Phys 34:364–372. doi:10.1088/0022-3727/34/3/320

    Article  Google Scholar 

  3. Klein T, Vicanek M, Simon G (1996) Forced oscillations of the keyhole in penetration laser beam welding. J Phys D Appl Phys 29:322–332. doi:10.1088/0022-3727/29/2/008

    Article  Google Scholar 

  4. Ruf A (2004) Modellierung des Perkussionsbohrens von Metallen mit kurz- und ultrakurzgepulsten Lasern, Dissertation, IFSW Stuttgart, Herbert Utz Verlag, München

  5. Solana P, Ocana JL (1997) A mathematical model for penetration laser welding as a free-boundary problem. J Phys D Appl Phys 30:1300–1313. doi:10.1088/0022-3727/30/9/005

    Article  Google Scholar 

  6. Geisel M (2002) Prozesskontrolle und –steuerung beim Laserstrahlschweißen mit den Methoden der nichtlinearen Dynamik, Dissertation, Chair of Manufacturing Technology, Meisenbach Verlag, Bamberg

  7. Beyer E (1995) Schweißen mit Laser. Springer, Berlin

    Google Scholar 

  8. Dowden JM (2001) The mathematics of thermal modeling. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  9. Demtröder W (2001) Experimentalphysik 1–Mechanik und Wärme, 2nd edn. Springer, Berlin

    Google Scholar 

  10. © 2004-2008 OpenCFD Limited, http:/www.opencfd.co.uk

  11. Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225. doi:10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  12. Ubbink O (1997) Numerical prediction of two fluid systems with sharp interfaces. PhD Thesis, University of London

  13. Müller MG (2002) Prozessüberwachung beim Laserstrahlschweißen durch Auswertung der reflektierten Leistung, Dissertation, Herbert Utz Verlag, München

  14. Stöcker H (2000) Taschenbuch der Physik, 4th edn. Verlag Harri Deutsch, Thun

    Google Scholar 

  15. Wachter A, Hoeber H (1998) Repetitorium Theoretische Physik. Springer, Berlin

    Google Scholar 

  16. Schoonderbeek A (2005) Laser drilling of metals with a XeCl excimer laser. PhD Thesis, Nederlands Centrum voor Laser Research, Print Partners Ipskamp, Enschede

  17. Kägeler C, Albert F, Mys I, Grimm A, Urmoneit U (2007) Observation of process oscillations during high power laser welding. In: Geiger M, Otto A, Schmidt M (eds) Proceedings of the LANE 2007. Meisenbach, Bamberg, pp 123–135

  18. Kägeler C, Klämpfl F, Schmidt M, Otto A (2007) Investigating a laser welding process with methods of non-linear dynamics. In: Vollertsen F, Emmelmann C, Schmidt M, Otto A (eds) Proceedings of the fourth international WLT-conference on lasers in manufacturing, pp 155–160

  19. Kurzyna J (1998) Searching for chaos fluctuations of a plasma induced during cw-CO2 laser welding. J Phys D Appl Phys 31:680–692. doi:10.1088/0022-3727/31/6/016

    Article  Google Scholar 

  20. Tzeng YF (2006) Gap-free lap welding of zinc-coated steel using pulsed CO2 laser. Int J Adv Manuf Technol 29:287–295. doi:10.1007/s00170-005-2522-3

    Article  Google Scholar 

  21. Fabbro R, Coste F, Goebels D, Kielwasser M (2006) Study of CW Nd-Yag laser welding of Zn-coated steel sheets. J Phys D Appl Phys 39:401–409. doi:10.1088/0022-3727/39/2/024

    Article  Google Scholar 

  22. Koch H, Leitz K-H, Otto A (2007) Three dimensional simulation of laser keyhole welding. In: Geiger M, Otto A, Schmidt M (eds) Proceedings of the LANE 2007. Meisenbach, Bamberg, pp 251–260

  23. Rito et al. (1988) Laser welding method. US Patent 4.745.257

  24. Schmidt M, Otto A, Kägeler C (2008) Analysis of YAG laser lap-welding of zinc coated steel sheets. CIRP Annals—Manufacturing Technology Nr. 57/1, pp 213–216

  25. Hesse T (2008) Neue Erkenntnisse und Lösungsgrundlagen beim Laserstrahlschweißen von verzinkten Werkstoffen. In: Ebert F (ed) Proceedings of EALA, pp 14–23

  26. Hesse T (2006) Prozesskontrolle mittels optischer Spektralanalyse für das Schweißen verzinkter Stahlfeinbleche mit Nd:YAG-Lasern. Dissertation, Laser Zentrum Hannover, PZH Verlag, Garbsen

  27. Katayama S, Wu Y, Matsunawa A (2001) Laser welding of zinc-coated steels. In: Proceedings of the ICALEO 2001, Paper no. P520

  28. Baardsen EL (1976) Method of welding galvanized steel. US Patent 3.969.604

  29. Pennington EJ (1987) Laser welding of galvanized steel. US Patent 4.642.446

  30. Stol I et al. (2004) Laser welding with beam oscillation. US Patent 6.740.845

  31. Banas CM et al (1987) Twin spot laser welding. US Patent 4.691.093, 1987

  32. Otto A, Geiger M (2007) From basic research to industrial applications—new developments for laser beam welding. In: Proceedings of the 4th international WLT-conference on lasers in manufacturing 2007. AT-Fachverlag, Stuttgart, pp 5–12

Download references

Acknowledgments

The authors would like to gratefully acknowledge the support of this project by the Bundesministerium für Bildung und Forschung within the research project “Fehlerfreies Laserstrahlschweißen verzinkter Stahlbleche durch frequenzmodulierte, resonante Anregung—FM-LaB” and the support received from the Erlangen Graduate School in Advanced Optical Technologies (SAOT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-H. Leitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, M., Leitz, KH., Koch, H. et al. A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod. Eng. Res. Devel. 3, 127–136 (2009). https://doi.org/10.1007/s11740-008-0148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-008-0148-7

Keywords

Navigation