Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search | Advances in Data Analysis and Classification Skip to main content

Advertisement

Log in

Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

This paper presents a multi-objective retinal blood vessels localization approach based on flower pollination search algorithm (FPSA) and pattern search (PS) algorithm. FPSA is a new evolutionary algorithm based on the flower pollination process of flowering plants. The proposed multi-objective fitness function uses the flower pollination search algorithm (FPSA) that searches for the optimal clustering of the given retinal image into compact clusters under some constraints. Pattern search (PS) as local search method is then applied to further enhance the segmentation results using another objective function based on shape features. The proposed approach for retinal blood vessels localization is applied on public database namely DRIVE data set. Results demonstrate that the performance of the proposed approach is comparable with state of the art techniques in terms of accuracy, sensitivity, and specificity with many extendable features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bezdek JC (1981) Pattern Recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Delibasis KK, Kechriniotis AI, Tsonos C, Assimakis N (2010) Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Comput Methods Prog Biomed 100:108–122

    Article  Google Scholar 

  • Dembele D (2008) Multi-objective optimization for clustering 3-way gene expression data. Adv Data Anal Classif 2(3):211–225

    Article  MathSciNet  MATH  Google Scholar 

  • Emary E, Zawbaa HM, Hassanien AE, Schaefer G, Azar AT (2014) Retinal blood vessel segmentation using bee colony optimisation and pattern search. International joint conference on neural networks (IJCNN), China

  • Emary E, Zawbaa HM, Hassanien AE, Schaefer G, Azar AT (2014) Retinal vessel segmentation based on possibilistic fuzzy c-means clustering optimized with cuckoo search. Proc. IEEE international joint conference on neural networks (IJCNN), China

  • Emary E, Zawbaa HM, Hassanien AE, Tolba MF, Snasel V (2014) Retinal vessel segmentation based on flower pollination search algorithm. International conference on innovations in bio-inspired computing and applications (IBICA), Czech Republic, pp 1001–1006

  • Foracchia M, Grisan E, Ruggeri A (2011) Extraction and quantitative description of vessel features in hypertensive retinopathy fundus images. In: Book abstracts of 2nd international workshop on computer assisted fundus image analysis

  • Fraz MM, Barman SA, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka AR, Owen CG (2012a) An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Methods Prog Biomed 108(2):600–616

  • Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012b) Blood vessel segmentation methodologies in retinal images-a survey. Comput Methods Prog Biomed 108(1):407–433

  • Hassanien AE, Emary E, Zawbaa HM (2015) Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search. Vis Commun Image Represent Elsevier 31:186–196

    Article  Google Scholar 

  • Hooshyar S, Khayati R (2010) Retina vessel detection using fuzzy ant colony algorithm. Canadian Conference Computer and Robot Vision (CRV), Ottawa, pp 239–244

  • Kose C, Kibas CI (2011) A personal identification system using retinal vasculature in retinal fundus images. Expert Syst Appl 38:13670–13681

  • Lewis RM, Torczon V (1996) Rank ordering and positive basis in pattern search algorithms. ICASE NASA Langley Research Center TR

  • Liu Z, Zhao X, Zuo MJ, Xu H (2014) Feature selection for fault level diagnosis of planetary gearboxes. Adv Data Anal Classif 8(4):377–401

    Article  MathSciNet  Google Scholar 

  • MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley symposium on mathematical statistics and probability, University of California Press, pp 281–297

  • Marin D, Aquino A, Gegundez-Arias ME, Bravo JM (2011) A new supervised method for blood vessel segmentation in retinal images by using grey-level and moment invariants-based features. IEEE Trans Med Imaging 30(1):146–158

    Article  Google Scholar 

  • Niemeijer M, Staal JJ, van Ginneken B, Loog M, Abramoff MD (2004) Comparative study of retinal vessel segmentation methods on a new publicly available database. SPIE Med Imaging 5370:648–656

    Google Scholar 

  • Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    Article  Google Scholar 

  • Pavlyukevich I (2007) Levy flights, non-local search and simulated annealing. Comput Phys 226:1830–1844

    Article  MathSciNet  MATH  Google Scholar 

  • Staal JJ, Abramoff MD, Niemeijer M, Viergever MA, Ginneken BV (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  • Torczon V (1997) On the convergence of pattern search algorithms. SIAM J Optim 7(1):1–25

    Article  MathSciNet  MATH  Google Scholar 

  • Vijayakumari V, Suriyanarayanan N (2012) Survey on the detection methods of blood vessel in retinal images. Eur J Sci Res 68(1):83–92

    Google Scholar 

  • Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G (2015) Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149:708–717

    Article  Google Scholar 

  • Wang G, Wang Z, Chen Y, Zhao W (2015) Robust point matching method for multimodal retinal image registration. Biomed Signal Process Control 19:68–76

    Article  Google Scholar 

  • Wangc Y, Ji G, Lin P, Trucco E (2013) Retinal vessel segmentation using multiwavelet kernels and multiscalehierarchical decomposition. Pattern Recogn 46:2117–2133

    Article  Google Scholar 

  • Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(6):80–83

    Article  Google Scholar 

  • Yang XS (2012) Flower pollination algorithm for global optimization. Unconv Comput Nat Comput Lect Notes Comput Sci 7445:240–249

    MATH  Google Scholar 

  • Yang XS, Karamanoglu M, He X (2013) Multi-objective flower algorithm for optimization. Proc Comput Sci 18:861–868

    Article  Google Scholar 

  • Zhang B, Zhang L, Zhangb L, Karray F (2010) Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 40:438–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam M. Zawbaa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emary, E., Zawbaa, H.M., Hassanien, A.E. et al. Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search. Adv Data Anal Classif 11, 611–627 (2017). https://doi.org/10.1007/s11634-016-0257-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-016-0257-7

Keywords

Mathematics Subject Classification

Navigation