Factor probabilistic distance clustering (FPDC): a new clustering method | Advances in Data Analysis and Classification Skip to main content
Log in

Factor probabilistic distance clustering (FPDC): a new clustering method

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Factor clustering methods have been developed in recent years thanks to improvements in computational power. These methods perform a linear transformation of data and a clustering of the transformed data, optimizing a common criterion. Probabilistic distance (PD)-clustering is an iterative, distribution free, probabilistic clustering method. Factor PD-clustering (FPDC) is based on PD-clustering and involves a linear transformation of the original variables into a reduced number of orthogonal ones using a common criterion with PD-clustering. This paper demonstrates that Tucker3 decomposition can be used to accomplish this transformation. Factor PD-clustering alternatingly exploits Tucker3 decomposition and PD-clustering on transformed data until convergence is achieved. This method can significantly improve the PD-clustering algorithm performance; large data sets can thus be partitioned into clusters with increasing stability and robustness of the results. Real and simulated data sets are used to compare FPDC with its main competitors, where it performs equally well when clusters are elliptically shaped but outperforms its competitors with non-Gaussian shaped clusters or noisy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Snow leopard, Ram 4 GB 1067 MHz DDR3 RAM, processor 2.26 GHz Intel Core 2 Duo.

References

  • Andersson CA, Bro R (2000) The N-way toolbox for MATLAB. Chemom Intell Lab Syst 52(1):1–4

    Article  Google Scholar 

  • Andrews JL, McNicholas PD (2011) Extending mixtures of multivariate t-factor analyzers. Stat Comput 21(3):361–373

    Article  MathSciNet  MATH  Google Scholar 

  • Arabie P, Hubert L (1994) Cluster analysis in marketing research. In: Bagozzi R (ed) Advanced methods in marketing research. Blackwell, Oxford, pp 160–189

    Google Scholar 

  • Ben-Israel A, Iyigun C (2008) Probabilistic d-clustering. J Classif 25(1):5–26

    Article  MathSciNet  MATH  Google Scholar 

  • Bezdek J (1974) Numerical taxonomy with fuzzy sets. J Math Biol 1(1):57–71

    Article  MathSciNet  MATH  Google Scholar 

  • Bock HH (1987) On the interface between cluster analysis, principal component analysis, and multidimensional scaling. Multivar Stat Model Data Anal 8:17–34

    Article  MathSciNet  MATH  Google Scholar 

  • Bouveyron C, Brunet C (2012) Simultaneous model-based clustering and visualization in the Fisher discriminative subspace. Stat Comput 22(1):301–324

    Article  MathSciNet  MATH  Google Scholar 

  • Bouveyron C, Brunet-Saumard C (2014) Model-based clustering of high-dimensional data: a review. Comput Stat Data Anal 71:52–78

    Article  MathSciNet  MATH  Google Scholar 

  • Campbell JG, Fraley F, Murtagh F, Raftery AE (1997) Linear flaw detection in woven textiles using model-based clustering. Pattern Recogn Lett 18:1539–1548

  • Ceulemans E, Kiers HAL (2006) Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method. Br J Math Stat Psychol 59(1):133–150

    Article  MathSciNet  Google Scholar 

  • Chiang M, Mirkin B (2010) Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads. J Classif 27(1):3–40

    Article  MathSciNet  MATH  Google Scholar 

  • Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Craen S, Commandeur J, Frank L, Heiser W (2006) Effects of group size and lack of sphericity on the recovery of clusters in k-means cluster analysis. Multivar Behav Res 41(2):127–145

    Article  Google Scholar 

  • De Sarbo WS, Manrai AK (1992) A new multidimensional scaling methodology for the analysis of asymmetric proximity data in marketing research. Mark Sci 11(1):1–20

    Article  Google Scholar 

  • De Soete, G. and J. D. Carroll (1994). k-means clustering in a low-dimensional Euclidean space. In: Diday E, Lechevallier Y, Schader M et al (eds) New approaches in classification and data analysis. Springer, Heidelberg, pp 212–219

  • Franczak BC, McNicholas PD, Browne RB, Murray PM (2013) Parsimonious shifted asymmetric Laplace mixtures. arXiv:1311:0317

  • Franczak BC, Tortora C, Browne RP, McNicholas PD (2015) Unsupervised learning via mixtures of skewed distributions with hypercube contours. Pattern Recognit Lett 58:69–76

    Article  Google Scholar 

  • Ghahramani Z, Hinton GE (1997) The EM algorithm for mixtures of factor analyzers. Crg-tr-96-1, Univ. Toronto, Toronto

  • Hwang H, Dillon WR, Takane Y (2006) An extension of multiple correspondence analysis for identifying heterogenous subgroups of respondents. Psychometrika 71:161–171

    Article  MathSciNet  MATH  Google Scholar 

  • Iodice D’Enza A, Palumbo F, Greenacre M (2008) Exploratory data analysis leading towards the most interesting simple association rules. Comput Stat Data Anal 52(6):3269–3281

    Article  MathSciNet  MATH  Google Scholar 

  • Iyigun C (2007) Probabilistic distance clustering. Ph.D. thesis, New Brunswick Rutgers, The State University of New Jersey

  • Jain AK (2009) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31(8):651–666

    Article  Google Scholar 

  • Karlis D, Santourian A (2009) Model-based clustering with non-elliptically contoured distributions. Stat Comput 19(1):73–83

    Article  MathSciNet  Google Scholar 

  • Kiers HAL, Der Kinderen A (2003) A fast method for choosing the numbers of components in Tucker3 analysis. Br J MathStat Psychol 56(1):119–125

    Article  MathSciNet  Google Scholar 

  • Kroonenberg PM (2008) Applied multiway data analysis. Ebooks Corporation, Hoboken

    Book  MATH  Google Scholar 

  • Kroonenberg PM, Van der Voort THA (1987) Multiplicatieve decompositie van interacties bij oordelen over de werkelijkheidswaarde van televisiefilms [multiplicative decomposition of interactions for judgments of realism of television films]. Kwantitatieve Methoden 8:117–144

    Google Scholar 

  • Lebart A, Morineau A, Warwick K (1984) Multivariate statistical descriptive analysis. Wiley, New York

    MATH  Google Scholar 

  • Lee SX, McLachlan GJ (2013) On mixtures of skew normal and skew t-distributions. Adv Data Anal Classif 7(3):241–266

    Article  MathSciNet  MATH  Google Scholar 

  • Lin T-I, McLachlan GJ, Lee SX (2013) Extending mixtures of factor models using the restricted multivariate skew-normal distribution. arXiv:1307:1748

  • Lin T-I (2009) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivar Anal 100:257–265

    Article  MathSciNet  MATH  Google Scholar 

  • Lin T-I (2010) Robust mixture modeling using multivariate skew t distributions. Stat Comput 20(3):343–356

    Article  MathSciNet  Google Scholar 

  • Lin T-I, McNicholas PD, Hsiu JH (2014) Capturing patterns via parsimonious t mixture models. Stat Probab Lett 88:80–87

    Article  MathSciNet  MATH  Google Scholar 

  • Markos A, Iodice D’Enza A, Van de Velden M (2013) clustrd: methods for joint dimension reduction and clustering. R package version 0.1.2

  • Maronna RA, Zamar RH (2002) Robust estimates of location and dispersion for high-dimensional datasets. Technometrics 44(4):307–317

    Article  MathSciNet  Google Scholar 

  • McLachlan GJ, Peel D (2000b) Mixtures of factor analyzers. In: Morgan Kaufman SF (ed) Proccedings of the seventeenth international conference on machine learning, pp 599–606

  • McLachlan GJ, Peel D, Bean RW (2003) Modelling high-dimensional data by mixtures of factor analyzers. Comput Stat Data Anal 41:379–388

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan GJ, Peel D (2000a) Finite mixture models. Wiley Interscience, New York

    Book  MATH  Google Scholar 

  • McNicholas PD, Jampani KR, McDaid AF, Murphy TB, Banks L (2011) pgmm: Parsimonious Gaussian Mixture Models. R package version 1:1

  • McNicholas SM, McNicholas PD, Browne RP (2013) Mixtures of variance-gamma distributions. arXiv:1309.2695

  • McNicholas PD, Murphy T (2008) Parsimonious Gaussian mixture models. Stat Comput 18(3):285–296

    Article  MathSciNet  Google Scholar 

  • Murray PM, Browne RB, McNicholas PD (2014) Mixtures of skew-t factor analyzers. Comput Stat Data Anal 77:326–335

    Article  MathSciNet  Google Scholar 

  • Palumbo F, Vistocco D, Morineau A (2008) Huge multidimensional data visualization: back to the virtue of principal coordinates and dendrograms in the new computer age. In: Chun-houh Chen WH, Unwin A (eds) Handbook of data visualization. Springer, pp 349–387

  • Rachev ST, Klebanov LB, Stoyanov SV, Fabozzi FJ (2013) The methods of distances in the theory of probability and statistics. Springer

  • Rocci R, Gattone SA, Vichi M (2011) A new dimension reduction method: factor discriminant k-means. J Classif 28(2):210–226

    Article  MathSciNet  MATH  Google Scholar 

  • Steane MA, McNicholas PD, Yada R (2012) Model-based classification via mixtures of multivariate t-factor analyzers. Commun Stat Simul Comput 41(4):510–523

    Article  MathSciNet  MATH  Google Scholar 

  • Stute W, Zhu LX (1995) Asymptotics of k-means clustering based on projection pursuit. Sankhyā 57(3):462–471

  • Subedi S, McNicholas PD (2014) Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions. Adv Data Anal Classif 8(2):167–193

    Article  MathSciNet  Google Scholar 

  • The MathWorks Inc. (2007) MATLAB—The Language of Technical Computing, Version 7.5. The MathWorks Inc., Natick

  • Timmerman ME, Ceulemans E, Roover K, Leeuwen K (2013) Subspace k-means clustering. Behav Res Methods Res 45(4):1011–1023

  • Timmerman ME, Ceulemans E, Kiers HAL, Vichi M (2010) Factorial and reduced k-means reconsidered. Comput Stat Data Anal 54(7):1858–1871

    Article  MathSciNet  MATH  Google Scholar 

  • Timmerman ME, Kiers HAL (2000) Three-mode principal components analysis: choosing the numbers of components and sensitivity to local optima. Br J Math Stat Psychol 53(1):1–16

    Article  Google Scholar 

  • Tortora, C. and M. Marino (2014). Robustness and stability analysis of factor PD-clustering on large social datasets. In D. Vicari, A. Okada, G. Ragozini, and C. Weihs (Eds.), Analysis and Modeling of Complex Data in Behavioral and Social Sciences, pp. 273–281. Springer

  • Tortora C, Gettler Summa M, Palumbo F (2013) Factor PD-clustering. In: Berthold UL, Dirk V (ed) Algorithms from and for nature and life, pp 115–123

  • Tortora C, McNicholas PD, Browne RP (2015) A mixture of generalized hyperbolic factor analyzers. Adv Data Anal Classif (in press)

  • Tortora C, McNicholas PD (2014) FPDclustering: PD-clustering and factor PD-clustering. R package version 1.0

  • Tortora C, Palumbo F (2014) FPDC. MATLAB and Statistics Toolbox Release (2012a) The MathWorks Inc. Natick

  • Tucker LR (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3):279–311

    Article  MathSciNet  Google Scholar 

  • Vermunt JK (2011) K-means may perform as well as mixture model clustering but may also be much worse: comment on Steinley and Brusco (2011). Psychol Methods 16(1):82–88

    Article  MathSciNet  Google Scholar 

  • Vichi M, Kiers HAL (2001) Factorial k-means analysis for two way data. Comput Stat Data Anal 37:29–64

    Article  MathSciNet  MATH  Google Scholar 

  • Vichi M, Saporta G (2009) Clustering and disjoint principal component analysis. Comput Stat Data Anal 53(8):3194–3208

    Article  MathSciNet  MATH  Google Scholar 

  • Vrbik I, McNicholas PD (2014) Parsimonious skew mixture models for model-based clustering and classification. Comput Stat Data Anal 71:196–210

    Article  MathSciNet  Google Scholar 

  • Yamamoto M, Hwang H (2014) A general formulation of cluster analysis with dimension reduction and subspace separation. Behaviormetrika 41:115–129

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to an associate editor and anonymous reviewers for their very helpful comments and suggestions, the cumulative effect of which has been a stronger manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Palumbo.

Appendix 1

Appendix 1

Correlation matrix of wine data set (Table 2), values equal to or higher than 0.5 in bold.

Table 2 Correlation matrix of wine data set

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tortora, C., Summa, M.G., Marino, M. et al. Factor probabilistic distance clustering (FPDC): a new clustering method. Adv Data Anal Classif 10, 441–464 (2016). https://doi.org/10.1007/s11634-015-0219-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-015-0219-5

Keywords

Mathematics Subject Classification

Navigation