Zusammenfassung
Ein erhöhter Bedarf an Personenauthentifizierung führte in den letzten Jahren zu einem breiten Einsatz biometrischer Erkennungssysteme. Mit vermehrtem Einsatz insbesondere von unbeaufsichtigten biometrischen Systemen kamen jedoch verstärkt Sicherheitsbedenken auf. Darunter stellen Präsentationsangriffe (PAs, d.h. Versuche, sich mit einem Replikat einer biometrischen Charakteristik oder Präsentationsangriffsinstrument in das System einzuloggen) eine ernsthafte Bedrohung für die Sicherheit des Systems dar: Jede Person könnte schließlich einen Gummifinger oder Gesichtsmaske herstellen oder bestellen, um sich als eine andere Person auszugeben. Die Biometrie-Community unternimmt daher erhebliche Anstrengungen, um automatische Mechanismen zur Präsentations-Angriffs- Detektierung (PAD) zu entwickeln. In diesem Artikel wird der Stand der PAD Technik sowohl für herkömmliche Fingerabdrucksensoren als auch für die neuesten Ansätze diskutiert.
Literatur
N. Ratha, J. Connell and R. Bolle, “Enhancing Security and Privacy in Biometrics-based Authentication Systems”, IBM Systems Journal, Vol. 40, 2001
ISO/IEC 30107-1. Information Technology – Biometric presentation attack detection – Part 1: General Framework, 2016
Handbook of Biometric Anti-Spoofing: Presentation Attack Detecion, Eds. S. Marcel, M. S. Nixon, J. Fierrez and N. Evans, Springer, 2019
L. Ghiani, D. A. Yambay, V. Mura, G. L. Marcialis et al., “Review of the Fingerprint Liveness Detection ({LivDet}) competition series: 2009 to 2015”, Image and Vision Computing, vol. 58, pp. 110-128, 2017
V. Mura, G. Orrù, R. Casula, A. Sibiriu et al., “LivDet 2017 Fingerprint Liveness Detection Competition”, in Proc. Proc. Int. Conf. on Biometrics (ICB), 2018
G. Orrù, R. Casula, P. Tuveri, C. Bazzoni, et al., “LivDet in Action-Fingerprint Liveness Detection Competition”, arXiv preprint arXiv:1905.00639, 2019
J. Galbally and M. Gomez-Barrero, “Presentation Attack Detection in Iris Recognition”, in Iris and Periocular Biometrics, Eds. C. Busch and C. Rathgeb, IET, 2017
C. Sousedik and C. Busch, “Presentation Attack Detection Methods for Fingerprint Recognition Systems: A Survey”, IET Biometrics, vol. 3, no. 1, pp. 1-15, 2014
E. Marasco and A. Ross, “A Survey on Antispoofing Schemes for Fingerprint Recognition Systems”, ACM Computing Surveys, vol. 47, no. 2, pp. 1-36, 2015
J. Galbally, S. Marcel and J. Fierrez, “Biometric antispoofing methods: A survey in face recognition”, IEEE Access, vol. 2, pp. 1530-1552, 2014
R. Raghavendra, M. Avinash, S. Marcel and C. Busch, “Finger Vein Liveness Detection Using Motion Magnification”, in Proc. Int. Conf. on Biometrics Theory, Applications and Systems (BTAS), pp. 1-7, 2015
I. Goodfellow, Y. Bengio and A. Courville, “Deep learning”, MIT Press, 2016
S.J. Pan and Q. Yang, “A Survey on Transfer Learning”, IEEE Trans. on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010
R.F. Nogueira, R.A. Lotufo, and R.C. Machado, “Fingerprint Liveness Detection Using Convolutional Neural Networks”, IEEE Trans. on Information Forensics and Security, vol. 11, no. 6, pp. 1206-1213, 2016
H. U. Jang, H. Y. Choi, D. Kim, J. Son and H. K. Lee, “Fingerprint Spoof Detection Using Contrast Enhancement and Convolutional Neural Networks”, in Proc. Int. Conf. on Information Science and Applications, pp. 331—338, 2017
S. Kim, B. Park, B. S. Song and S. Yang, “Deep belief network based statistical feature learning for fingerprint liveness detection”, Pattern Recognition Letters, vol. 77, pp. 58-65, 2016
A. Toosi, S. Cumani, and A. Bottino, “CNN Patch-Based Voting for Fingerprint Liveness Detection”, in Proc. Int. Joint Conf. on Computational Intelligence, 2017
G. B. Souza, D. Santos, R. G. Pires, A. N. Marana and J. P. Papa, “Deep boltzmann machines for robust fingerprint spoofing attack detection”, in Proc. Int. Joint Conf. on Neural Networks, 2017
T. Chugh, K. Cao, A. K. and Jain, “Fingerprint Spoof Buster: Use of Minutiae-Centered Patches”, IEEE Trans. on Information Forensics and Security, vol. 13, no. 9, pp. 2190-2202, 2018
O. Kanich, M. Drahansky and M. Mezl, „Use of creative materials for fingerprint spoofs“, in Proc. Int. Workshop on Biometrics and Forensics (WIFS), 2018
R. Tolosana, M. Gomez-Barrero, C. Busch and J. Ortega-Garcia, “Biometric Presentation Attack Detection: Beyond the Visible Spectrum”, IEEE Trans. On Information Forensics and Security, 2019
M. Gomez-Barrero, J. Kolberg and C. Busch, „Multi-Modal Fingerprint Presentation Attack Detection: Looking at the Surface and the Inside“, in Proc. Int. Conf. On Biometrics (ICB), 2019
P. Keilbach, J. Kolberg, M. Gomez-Barrero and C. Busch, „Fingerprint Presentation Attack Detection using Laser Speckle Contrast Imaging“, in Proc. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2018
M. Hussein, L. Spinoulas, F. Xiong and W. Abd-Almageed, “Fingerprint Presentation Attack Detection Using A Novel Multi-Spectral Capture Device and Patch-Based Convolutional Neural Networks”, in Proc. Int. Workshop on Information Forensics and Security (WIFS), 2018
ISO/IEC 30107-3. Information Technology – Biometric presentation attack detection – Part 3: Testing and Reporting, 2017
D. Menotti, G. Chiachia, A. Pinto, W.R. Schwartz, H. Pedrini, A. X. Falcao, and A. Rocha, “Deep representations for iris, face, and fingerprint spoofing detection”, IEEE Trans. on Information Forensics and Security, vol. 10, no. 4., pp. 864-879, 2015
E. Marasco, P. Wild and B. Cukic, “Robust and interoperable fingerprint spoof detection via convolutional neural networks”, in Proc. Int. Conf. on Technologies for Homeland Security (HST), 2016
C. Yuan, X. Li, Q. Wu, J. Li and X. Sun, “Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis”, Computers, Materials & Continua, vol. 53, no.4, pp. 357-372, 2017
C. Wang, K. Li, Z. Wu and Q. Zhao, „A DCNN based fingerprint liveness detection algorithm with voting strategy“, in Proc. Chinese Conf. on Biometric Recognition (CCBR), pp. 241-249, 2015
E. Park, W. Kim, Q. Li, J. Kim and H. Kim, „Fingerprint liveness detection using CNN features of random sample patches“, in Proc. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), 2016
G. B. Souza, D. Santos, R. G. Pires, A. N. Marana and J. P. Papa, “Deep Boltzmann machines for robust fingerprint spoofing attack detection”, in Proc. Int. Joint Conf. on Neural Networks (IJCNN), pp. 1863-1870, 2017
F. Pala and B. Bhanu, “On the accuracy and robustness of deep triplet embedding for fingerprint liveness detection”, in Proc. Int. Conf. on Image Processing (ICIP), pp. 116-120, 2017
E. Park, X. Cui, W. Kim, J. Liu and H. Kim, “Patch-based Fake Fingerprint Detection Using a Fully Convolutional Neural Network with a Small Number of Parameters and an Optimal Threshold”, arXiv:1803.07817, 2018
A. Toosi, A. Bottino, S. Cumani, P. Negri and P. L. Sottile, “Feature Fusion for Fingerprint Liveness Detection: a Comparative Study”, IEEE Access, vol. 5, pp. 23695-23709, 2017
R. K. Rowe, K. A. Nixon P. W. and Butler, “Multispectral Fingerprint Image Acquisition”, in Advances in Biometrics: Sensors, Algorithms and Systems, 2008
M. Gomez-Barrero and C. Busch, “Multi-Spectral Convolutional Neural Networks for Biometric Presentation Attack Detection”, in Proc. Norwegian Information Security Conference (NISK), 2019
T. Chugh and A. K. Jain, “OCT Fingerprints: Resilience to Presentation Attacks”, arXiv preprint arXiV:1908.00102, 2019
T. Chugh and A. Jain, “Fingerprint Presentation Attack Detection: Generalization and Efficiency”, in Proc. Int. Conf. on Biometrics (ICB), 2019
J. Engelsma and A. Jain, “Generalizing Fingerprint Spoof Detector: Learning a One-Class Classifier”, in Proc. Int. Conf. on Biometrics (ICB), 2019
R. Gajawada, A. Popli, T. Chugh, A. Namboodiri and A. Jain, “Universal Material Translator: Towards Spoof Fingerprint Generalization”, in Proc. Int. Conf. on Biometrics (ICB), 2019
L. J. Gonzalez-Soler, M. Gomez-Barrero, L. Chang, A. Perez-Suarez, J. Hernandez-Palancar and C. Busch, “Fingerprint presentation attack detection based on local features encoding for unknown attacks”, arXiv:1908.10163, 2019
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gomez-Barrero, M., Kolberg, J. & Busch, C. Erkennung von Präsentationsangriffen auf Fingerabdruck Systemen . Datenschutz Datensich 44, 26–31 (2020). https://doi.org/10.1007/s11623-019-1217-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11623-019-1217-0