Stability of strain gradient elastic bars in tension | Optimization Letters
Skip to main content

Stability of strain gradient elastic bars in tension

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

An Erratum to this article was published on 21 March 2008

Abstract

Equilibrium of a bar under uniaxial tension is considered as optimization problem of the total potential energy. Uniaxial deformations are considered for a material with linear constitutive law of strain second gradient elasticity. Applying tension on an elastic bar, necking is shown up in high strains. That means the axial strain forms two homogeneously deformed sections in the ends of the bars and a section in the middle with high variable strain. The interactions of the intrinsic (material) lengths with the non linear strain displacement relations develop critical states of bifurcation with continuous Fourier’s spectrum. Critical conditions and post-critical deformations are defined with the help of multiple scales perturbation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis E. (1992). On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10): 1279–1299

    Article  MATH  Google Scholar 

  2. Altan B.S., Evensen H. and Aifantis E. (1996). Longitudinal vibrations of a beam: a gradient elasticity approach. Mech. Res. Commun. 23: 35–40

    Article  MATH  Google Scholar 

  3. Antman S.S. (1973). Nonuniqueness of equilibrium states for bars in tension. J. Math. Anal. Appl. 44: 333–349

    Article  MATH  MathSciNet  Google Scholar 

  4. Bazant Z.P. (1976). Instability, ductility and size effect in strain softening concrete. J. Eng. Mech. (ASCE) 102: 225–238

    Google Scholar 

  5. Bender, C., Orszag, S.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, NY (1978)

  6. Carr J., Gurtin M. and Slemrod M. (1984). Structured phase transitions on a finite interval. Arc. Rat. Mech. Anal. 86: 317–351

    Article  MATH  MathSciNet  Google Scholar 

  7. Carr J., Gurtin M. and Slemrod M. (1985). One dimensional structured phase transitions under prescribed loads. J. Elast. 15: 133–142

    Article  MATH  MathSciNet  Google Scholar 

  8. Coleman B.D. (1983). Necking and drawing in polymeric fibers under tension. Arc. Rat. Mech. Anal. 83: 115–137

    MATH  Google Scholar 

  9. Del Piero G. and Owen D.R. (1993). Structured deformations of continua. Arch. Rat. Mech. Anal. 124: 99–155

    Article  MATH  MathSciNet  Google Scholar 

  10. Del Piero G. and Truskinovsky L. (1998). A one dimensional model for localized and distributed failure. J. Phys. IV France 8: 95–102

    Article  Google Scholar 

  11. Ericksen J.L. (1975). Equilibrium of bars. J. Elast. 5: 191–202

    Article  MATH  MathSciNet  Google Scholar 

  12. Fleck N.A., Muller G.M., Ashby M.F. and Hutchinson J.W. (1993). Strain gradient plasticity: theory and experiment. Acta Metallurgica Et Materialia 42: 475–487

    Article  Google Scholar 

  13. Hutchinson J.W. and Neale K.W. (1983). Neck propagation. Jnl. Mech. Phys. Solids 31(5): 405–426

    Article  MATH  Google Scholar 

  14. Kunin I. (1982). Elastic Media with Microstructure I, One-Dimensional Models. Springer, Heidelberg

    MATH  Google Scholar 

  15. Kunin I. (1983). Elastic Media with Microstructure I, Three-Dimensional Models. Springer, Heidelberg

    Google Scholar 

  16. Lazopoulos K.A. and Ogden R.W. (1998). Nonlinear elasticity theory with discontinuous internal variables. Maths Mech. Solids 3: 29–51

    Article  MATH  MathSciNet  Google Scholar 

  17. Lazopoulos K.A. (2003). Post-buckling problems for long elastic beams. Acta Mechanica 164(3–4): 189–198

    Article  MATH  Google Scholar 

  18. Lange C.G. and Newell A.C. (1971). The post-buckling problem for thin elastic shells. SIAM J. Appl. Math. 21(4): 605–629

    Article  MATH  Google Scholar 

  19. Mindlin R.D. (1965). Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1: 109–124

    Google Scholar 

  20. Nayfeh, A.H.: Perturbation Methods. Wiley, NY, pp. 228–307 (1973)

  21. Needleman A. (1972). A numerical study of necking in circular cylindrical bars. J. Mech. Phys. Solids 20: 111–127

    Article  MATH  Google Scholar 

  22. Ogden, R.W.: Non-linear Elastic Deformations. Dover, NY (1997)

  23. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Birkhaeuser, Boston (1985)

  24. Thompson J.M.T. and Hunt G.W. (1973). A General Theory of Elastic Stability. Wiley, London

    MATH  Google Scholar 

  25. Toupin R.A. (1965). Theories of elasticity with couple stress. Arch. Rat. Mech. Anal. 17: 85–112

    MathSciNet  Google Scholar 

  26. Troger H. and Steindl A. (1991). Nonlinear Stability and Bifurcation Theory. Springer, Heidelberg

    MATH  Google Scholar 

  27. Truskinovsky L. and Zanzotto G. (1996). Ericksen’s bar revisited: energy wiggles. J. Mech. Phys. Solids 44: 1371–1408

    Article  MathSciNet  Google Scholar 

  28. Tsepoura K.G., Papargyri-Beskou S., Polyzos D. and Beskos D.E. (2002). Static and dynamic analysis of gradient elastic bars in tension. Arch. Appl. Mech. 72: 483–497

    Article  MATH  Google Scholar 

  29. Vainberg M.M. and Trenogin V.A. (1974). Theory of solution branching of nonlinear equations. Nauka, English. Trans

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Lazopoulos.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11590-008-0081-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakogianni, D.G., Lazopoulos, K.A. Stability of strain gradient elastic bars in tension. Optimization Letters 1, 407–420 (2007). https://doi.org/10.1007/s11590-006-0039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-006-0039-9

Keywords