On the functional form of convex underestimators for twice continuously differentiable functions | Optimization Letters Skip to main content
Log in

On the functional form of convex underestimators for twice continuously differentiable functions

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The optimal functional form of convex underestimators for general twice continuously differentiable functions is of major importance in deterministic global optimization. In this paper, we provide new theoretical results that address the classes of optimal functional forms for the convex underestimators. These are derived based on the properties of shift-invariance and sign- invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adjiman C.S., Floudas C.A.(1996): Rigorous convex underestimators for general tweice-differentiable problems. J. Global Optim. 9, 23–40

    Article  MATH  MathSciNet  Google Scholar 

  2. Adjiman C.S., Dallwig S., Androulakis I., Floudas C.A., Neumaier A.(1998): A global optimization method, αBB, for general twice-differentiable constrained NLP I. Theoretical aspects. Comput. Chem. Eng. 22(9): 1137–1158

    Google Scholar 

  3. Adjiman C.S., Androulakis I., Floudas C.A.(1998): A global optimization method, αBB, for general twice-differentiable constrained NLP II Implementation and computational results. Comput. Chem. Eng. 22, 1159–1179

    Article  Google Scholar 

  4. Akrotirianakis I.G., Floudas C.A.(2004): Computational experience with a new class of convex underestimators: box-constrained NLP problems. J. Global Optim., 29, 249–264

    Article  MATH  MathSciNet  Google Scholar 

  5. Akrotirianakis I.G., Floudas C.A.(2004): A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Global Optim. 30, 367–390

    Article  MATH  MathSciNet  Google Scholar 

  6. Androulakis I.P., Maranas C.D., Floudas C.A. (1995): Alpha BB: a global optimization method for general constrained nonconvex problems. J. Global Optim. 7, 337–363

    Article  MATH  MathSciNet  Google Scholar 

  7. Floudas C.A.(2000): Deterministic Global Optimization: Theory, Methods, and Applications. Kluwer, Dordrecht

    Google Scholar 

  8. Floudas C.A.(2005): Research challenges, opportunities and synergism in systems engineering and computational biology. AIChE J. 51, 1872–1884

    Article  Google Scholar 

  9. Floudas, C.A., Kreinovich, V.: Towards optimal techniques for solving global optimization problems: symmetry-based approach. In. Torn, A., Zilinskas, J. (eds.) Models, and Algorithms for Global Optimization, Springer, Dordrecht (to appear) (2006)

  10. Floudas C.A., Akrotirianakis I.G., Caratzoulas S., Meyer C.A., Kallrath J. (1995): Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202

    Article  Google Scholar 

  11. Maranas C.D., Floudas C.A.(1994): Global minimal potential energy conformations for small molecules. J. Global Optim. 4, 135–170

    Article  MATH  MathSciNet  Google Scholar 

  12. Adjiman C.S., Androulakis I.P., Maranas C.D., Floudas C.A. (1996): A global optimization method, alphaBB, for process design. Comput. Chem. Eng. 20, S419–S424

    Article  Google Scholar 

  13. Maranas C.D., Floudas C.A.(1995): Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim. 7(2): 143–182

    Article  MATH  MathSciNet  Google Scholar 

  14. Androulakis I.P., Maranas C.D., Floudas C.A.(1997): Prediction of oligopeptide conformations via deterministic global optimization. J. Global Optim. 11(1): 1–34

    Article  MATH  MathSciNet  Google Scholar 

  15. Adjiman C.S., Androulkis I.P., Floudas C.A.(1997): Global optimization of MINLP problems in process synthesis and design. Comput. Chem. Eng. 21, S445–S450

    Google Scholar 

  16. Adjiman C.S., Androulakis I.P., Floudas C.A. (2000): Global optimization of mixed-integer nonlinear problems. AIChE J. 46(9): 1769–1797

    Article  Google Scholar 

  17. Esposito W.R., Floudas C.A.(1998): Global optimization in parameter estimation of nonlinear algebraic models via the error-in-variables approach. Ind. Eng. Chem. Res. 37(5): 1841–1858

    Article  Google Scholar 

  18. Esposito W.R., Floudas C.A. (2000): Global optimization in parameter estimation of differential-algebraic systems. Ind. Eng. Chem. Res. 39(5): 1291–1310

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos A. Floudas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Floudas, C.A., Kreinovich, V. On the functional form of convex underestimators for twice continuously differentiable functions. Optimization Letters 1, 187–192 (2007). https://doi.org/10.1007/s11590-006-0003-8

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-006-0003-8

Keywords

Navigation