Abstract
This work focuses on autonomous surface reconstruction of small-scale objects with a robot and a 3D sensor. The aim is a high-quality surface model allowing for robotic applications such as grasping and manipulation. Our approach comprises the generation of next-best-scan (NBS) candidates and selection criteria, error minimization between scan patches and termination criteria. NBS candidates are iteratively determined by a boundary detection and surface trend estimation of the acquired model. To account for both a fast and high-quality model acquisition, that candidate is selected as NBS, which maximizes a utility function that integrates an exploration and a mesh-quality component. The modeling and scan planning methods are evaluated on an industrial robot with a high-precision laser striper system. While performing the new laser scan, data are integrated on-the-fly into both, a triangle mesh and a probabilistic voxel space. The efficiency of the system in fast acquisition of high-quality 3D surface models is proven with different cultural heritage, household and industrial objects.
Similar content being viewed by others
Notes
Out-of-stream processing denotes the processing of data directly from a real-time data stream, e.g., the live stream of a 3D sensor or camera.
References
Albalate, M.T.L., Devy, M., Martí, J.M.S.: Perception Planning for An Exploration Task of a 3d Environment. In: IEEE ICPR, pp. 704–707. Washington, DC (2002)
Banta, J.E., Wong, L.R., Dumont, C., Abidi, M.A.: A next-best-view system for autonomous 3-D object reconstruction. IEEE TSMC. 30(5):589–598 (2000)
Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE PAMI. 14(2):239–256 (1992)
Blaer, P., Allen, P.K.: Data Acquisition and View Planning for 3-d Modeling Tasks. In: IEEE/RSJ IROS, pp. 417–422. San Diego, (2007)
Bodenmüller, T.: Streaming Surface Reconstruction from Real Time 3D Measurements. Ph.D. thesis, Technische Universität München (TUM) (2009)
Callieri, M., Fasano, A., Impoco, G., Cignoni, P., Scopigno, R., Parrini, G., Biagini, G.: RoboScan: An Automatic System for Accurate and Unattended 3D Scanning. In: IEEE 3DPVT, pp. 805–812. Thessaloniki, Greece (2004)
Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems: a survey of recent developments. IJRR. 30(11):1343–1377 (2011)
Chen, S.Y., Li, Y.: Vision sensor planning for 3-D model acquisition. IEEE TSMC. 35(5):894–904 (2005)
Foix, S., Kriegel, S., Fuchs, S., Alenyà, G., Torras, C.: Information-gain view planning for free-form object reconstruction with a 3d tof camera. In: ACIVS, LNCS, vol. 7517, pp. 36–47. Springer, Brno, (2012)
Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3):189–206 (2013)
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A.: Kinectfusion: Real-Time 3d Reconstruction and Interaction Using a Moving Depth Camera. In: ACM UIST, pp. 559–568. New York (2011)
Johnson, A.E., Hoffman, R., Osborn, J., Hebert, M.: A System for Semi-Automatic Modeling of Complex Environments. In: IEEE 3DIM, pp. 213–220. Ottawa (1997)
Karaszewski, M., Sitnik, R., Bunsch, E.: On-line, collision-free positioning of a scanner during fully automated three-dimensional measurement of cultural heritage objects. RAS. 60(9):1205–1219 (2012)
Kasper, A., Xue, Z., Dillmann, R.: The kit object models database: an object model database for object recognition, localization and manipulation in service robotics. IJRR. 31(8):927–934 (2012)
Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.K.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE TRA. 12(4):566–580 (1996)
Khalfaoui, S.; Seulin, R.; Fougerolle, Y.; Fofi, D.: View planning approach for automatic 3d digitization of unknown objects. In: ECCV Workshops, Lecture Notes in Computer Science, vol. 7585, pp. 496–505. Springer (2012)
Kriegel, S., Bodenmüller, T., Suppa, M., Hirzinger, G.: A Surface-Based Next-Best-View Approach for Automated 3D Model Completion of Unknown Objects. In: IEEE ICRA, pp. 4869–4874. Shanghai (2011)
Kriegel, S., Brucker, M., Marton, Z.C., Bodenmüller, T., Suppa, M.: Combining Object Modeling and Recognition for Active Scene Exploration. In: IEEE/RSJ IROS, pp. 2384–2391. Tokyo (2013)
Kriegel, S., Rink, C., Bodenmüller, T., Narr, A., Suppa, M., Hirzinger, G.: Next-Best-Scan Planning for Autonomous 3D Modeling. In: IEEE/RSJ IROS, pp. 2850–2856. Vilamoura (2012)
Kuffner, J.J., LaValle, S.M.: RRT-Connect: An Efficient Approach to Single-Query Path Planning. In: IEEE ICRA, pp. 781–787. San Francisco (2000)
Larsson, S., Kjellander, J.A.P.: Path planning for laser scanning with an industrial robot. RAS. 56(7):615–624 (2008)
Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., Fulk, D.: The Digital Michelangelo Project: 3D Scanning of Large Statues. In: SIGGRAPH, pp. 131–144 (2000)
Liepa, P.: Filling Holes in Meshes. In: ACM SGP, pp. 200–205. Aachen (2003)
Loriot, B., Ralph, S., Gorria, P.: Non-model based method for an automation of 3D acquisition and post-processing. ELCVIA. 7(3):67–82 (2008)
Low, K.L., Lastra, A.: Efficient Constraint Evaluation Algorithms for Hierarchical Next-Best-View Planning. In: IEEE 3DPVT, pp. 830–837. Chapel Hill, North Carolina (2006)
Massios, N.A., Fisher, R.B.: A Best Next View Selection Algorithm Incorporating a Quality Criterion. In: BMVC, pp. 780–789. British Machine Vision Association (1998)
Maver, J., Bajcsy, R.: Occlusions as a guide for planning the next view. IEEE PAMI. 15:417–433 (1993)
Mehdi-Souzani, C., Thiebaut, F., Lartigue, C.: Scan planning strategy for a general digitized surface. JCISE. 6(4):331–339 (2006)
Pito, R.: A solution to the next best view problem for automated surface acquisition. IEEE PAMI. 21(10):1016–1030 (1999)
Potthast, C., Sukhatme, G.S.: Next Best View Estimation With Eye In Hand Camera. In: IEEE/RSJ IROS Workshop. San Francisco (2011)
Prieto, F., Lepage, R., Boulanger, P., Redarce, T.: A CAD-based 3D data acquisition strategy for inspection. MVA. 15(2):76–91 (2003)
Sahbani, A., El-Khoury, S., Bidaud, P: An overview of 3d object grasp synthesis algorithms. RAS. 60(3):326–336 (2012)
Scheibe, K., Suppa, M., Hirschmüller, H., Strackenbrock, B., Huang, F., Liu, R., Hirzinger, G.: Multi-Scale 3D-Modeling. In: PSIVT, pp. 96–107. Hsinchu (2006)
Scott, W.R., Roth, G., Rivest, J.F.: View planning for automated 3D object reconstruction inspection. ACM Comput. Surv. 35(1):64–96 (2003)
Strobl, K.H., Mair, E., Bodenmüller, T., Kielhöfer, S., Sepp, W., Suppa, M., Burschka, D., Hirzinger, G.: The Self-Referenced DLR 3D-Modeler. In: IEEE/RSJ IROS, pp. 21–28. St. Louis (2009)
Suppa, M.: Autonomous Robot Work Cell Exploration using Multisensory Eye-in-Hand Systems. Ph.D. thesis, Leibniz Universität Hannover (2008)
Suppa, M., Kielhöfer, S., Langwald, J., Hacker, F., Strobl, K.H., Hirzinger, G.: The 3D-Modeller: A Multi-Purpose Vision Platform. In: IEEE ICRA, pp. 781–787. Roma (2007)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
Torabi, L., Gupta, K.: An autonomous six-DOF eye-in-hand system for in situ 3D object modeling. IJRR. 31(1):82–100 (2012)
Trummer, M., Munkelt, C., Denzler, J.: Online Next-Best-View Planning for Accuracy Optimization Using an Extended E-Criterion. In: IEEE ICPR, pp. 1642–1645. Istanbul (2010)
Vasquez-Gomez, J.I., Lopez-Damian, E., Sucar, L.E.: View Planning for 3D Object Reconstruction. In: IEEE/RSJ IROS, pp. 4015–4020. St. Louis (2009)
Weinmann, M., Schwartz, C., Ruiters, R., Klein, R.: A Multi-Camera, Multi-Projector Super-Resolution Framework for Structured Light. In: IEEE 3DIMPVT, pp. 397–404. Hangzhou (2011)
Wong, L.M., Dumont, C., Abidi, M.A.: Next Best View System in a 3-D Object Modeling Task. In: IEEE CIRA, pp. 306–311. Monterey (1999)
Wren, E.: Trend surface analysis—a review. CJEG. 19:39–44 (1973)
Wurm, K.M., Hornung, A., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: A Probabilistic, Flexible, and Compact 3D Map Representation for Robotic Systems. In: IEEE ICRA Workshop. Anchorage (2010)
Acknowledgments
This work has partly been supported by the European Commission under contract number FP7-ICT-260026-TAPAS. The authors would like to thank the editor and all the reviewers for their constructive comments. Our special thanks go to Daniel Seth for his support with the octree structure, Andreas Dömel for his help with the path planner, Klaus Strobl for helping with the sensor calibration and Zoltan-Csaba Marton for good ideas and feedback.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kriegel, S., Rink, C., Bodenmüller, T. et al. Efficient next-best-scan planning for autonomous 3D surface reconstruction of unknown objects. J Real-Time Image Proc 10, 611–631 (2015). https://doi.org/10.1007/s11554-013-0386-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-013-0386-6