Abstract
Purpose
A hotspot of bone metastatic lesion in a whole-body bone scintigram is often observed as left–right asymmetry. The purpose of this study is to present a network to evaluate bilateral difference of a whole-body bone scintigram, and to subsequently integrate it with our previous network that extracts the hotspot from a pair of anterior and posterior images.
Methods
Input of the proposed network is a pair of scintigrams that are the original one and the flipped version with respect to body axis. The paired scintigrams are processed by a butterfly-type network (BtrflyNet). Subsequently, the output of the network is combined with the output of another BtrflyNet for a pair of anterior and posterior scintigrams by employing a convolutional layer optimized using training images.
Results
We evaluated the performance of the combined networks, which comprised two BtrflyNets followed by a convolutional layer for integration, in terms of accuracy of hotspot extraction using 1330 bone scintigrams of 665 patients with prostate cancer. A threefold cross-validation experiment showed that the number of false positive regions was reduced from 4.30 to 2.13 for anterior and 4.71 to 2.62 for posterior scintigrams on average compared with our previous model.
Conclusions
This study presented a network for hotspot extraction of bone metastatic lesion that evaluates bilateral difference of a whole-body bone scintigram. When combining the network with the previous network that extracts the hotspot from a pair of anterior and posterior scintigrams, the false positives were reduced by nearly half compared to our previous model.
Similar content being viewed by others
Notes
Note that these statistics do not include 199 out of 665 patients since age information was not available owing to the anonymization issue.
References
Soloway MS, Hardeman SW, Hickey D, Todd B, Soloway S, Raymond J, Moinuddin M (1988) Stratification of patients with metastatic prostate cancer based on extent of disease on initial bone scan. Cancer 61(1):195–202
Erdi YE, Humm JL, Imbriaco M, Yeung H, Larson SM (1997) Quantitative bone metastases analysis based on image segmentation. J Nucl Med 38(9):1401–1406
Van den Wyngaert T, Strobel K, Kampen WU, Kuwert T, van der Bruggen W, Mohan HK, Gnanasegaran G, Delgado-Bolton R, Weber WA, Beheshti M, Langsteger W, Giammarile F, Mottaghy FM, Paycha F (2016) The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging 43(9):1723–1738. https://doi.org/10.1007/s00259-016-3415-4
Yin TK, Chiu NT (2004) A computer-aided diagnosis for locating abnormalities in bone scintigraphy by a fuzzy system with a three-step minimization approach. IEEE Trans Med Imag 23(5):639–654. https://doi.org/10.1109/TMI.2004.826355
Huang JY, Kao PF, Chen YS (2007) A set of image processing algorithms for computer-aided diagnosis in nuclear medicine whole body bone scan images. IEEE Trans Nucl Sci 54(3):514–522. https://doi.org/10.1109/TNS.2007.897830
Shiraishi J, Li Q, Appelbaum D, Pu Y, Doi K (2007) Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans. Med Phys 34(1):25–36, https://doi.org/10.1118/1.2401044
Šajn L, Kononenko I, Milčinski M (2007) Computerized segmentation and diagnostics of whole-body bone scintigrams. Comput Med Imaging Graph 31(7):531–541. https://doi.org/10.1016/j.compmedimag.2007.06.004
Sadik M, Jakobsson D, Olofsson F, Ohlsson M, Suurkula M, Edenbrandt L (2006) A new computer-based decision-support system for the interpretation of bone scans. Nucl Med Commun 27(5):417–423. https://doi.org/10.1097/00006231-200605000-00002
Sadik M, Hamadeh I, Nordblom P, Suurkula M, Höglund P, Ohlsson M, Edenbrandt L (2008) Computer-assisted interpretation of planar whole-body bone scans. J Nucl Med 49(12):1958–1965. https://doi.org/10.2967/jnumed.108.055061
Sadik M, Suurkula M, Höglund P, Järund A, Edenbrandt L (2009) Improved classifications of planar whole-body bone scans using a computer-assisted diagnosis system: a multicenter, multiple-reader, multiple-case study. J Nucl Med 50(3):368–375. https://doi.org/10.2967/jnumed.108.058883
Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IH (1975) Report of the task group on reference man. ICRP Publication 23
Kikuchi A, Onoguchi M, Horikoshi H, Sjöstrand K, Edenbrandt L (2012) Automated segmentation of the skeleton in whole-body bone scans: influence of difference in atlas. Nucl Med Commun 33(9):947–953. https://doi.org/10.1097/MNM.0b013e3283567407
Horikoshi H, Kikuchi A, Onoguchi M, Sjöstrand K, Edenbrandt L (2012) Computer-aided diagnosis system for bone scintigrams from Japanese patients: importance of training database. Ann Nucl Med 26(8):622–626. https://doi.org/10.1007/s12149-012-0620-5
Ulmert D, Kaboteh R, Fox JJ, Savage C, Evans MJ, Lilja H, Abrahamsson PA, Björk T, Gerdtsson A, Bjartell A, Gjertsson P, Höglund P, Lomsky M, Ohlsson M, Richter J, Sadik M, Morris MJ, Scher HI, Sjöstrand K, Yu A, Suurküla M, Edenbrandt L, Larson SM (2012) A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol 62(1):78–84. https://doi.org/10.1016/j.eururo.2012.01.037
Nakajima K, Nakajima Y, Horikoshi H, Ueno M, Wakabayashi H, Shiga T, Yoshimura M, Ohtake E, Sugawara Y, Matsuyama H, Edenbrandt L (2013) Enhanced diagnostic accuracy for quantitative bone scan using an artificial neural network system: a Japanese multi-center database project. EJNMMI Res 3(1):83. https://doi.org/10.1186/2191-219X-3-83
Petersen LJ, Mortensen JC, Bertelsen H, Zacho HD (2015) Computer-assisted interpretation of planar whole-body bone scintigraphy in patients with newly diagnosed prostate cancer. Nucl Med Commun 36(7):679–685. https://doi.org/10.1097/mnm.0000000000000307
Koizumi M, Miyaji N, Murata T, Motegi K, Miwa K, Koyama M, Terauchi T, Wagatsuma K, Kawakami K, Richter J (2015) Evaluation of a revised version of computer-assisted diagnosis system, BONENAVI version 2.1.7, for bone scintigraphy in cancer patients. Ann Nucl Med 29(8):659–665. https://doi.org/10.1007/s12149-015-0988-0
Brown MS, Chu GH, Kim HJ, Allen-Auerbach M, Poon C, Bridges J, Vidovic A, Ramakrishna B, Ho J, Morris MJ, Larson SM, Scher HI, Goldin JG (2012) Computer-aided quantitative bone scan assessment of prostate cancer treatment response. Nucl Med Commun 33(4):384–394. https://doi.org/10.1097/MNM.0b013e3283503ebf
Brown MS, Kim HJ, Chu GH, Ramakrishna B, Allen-Auerbach M, Fischer CP, Levine B, Gupta PK, Schiepers CW, Goldin JG (2018) Quantitative bone scan lesion area as an early surrogate outcome measure indicative of overall survival in metastatic prostate cancer. J Med Imaging 5(1):011017
Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24(1):205–219. https://doi.org/10.1016/j.media.2015.06.012
Papandrianos N, Papageorgiou E, Anagnostis A, Papageorgiou K (2020a) Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. PLOS ONE 15(8):1–28. https://doi.org/10.1371/journal.pone.0237213
Papandrianos N, Papageorgiou E, Anagnostis A, Papageorgiou K (2020b) Efficient bone metastasis diagnosis in bone scintigraphy using a fast convolutional neural network architecture. Diagnostics 10(8):532
Papandrianos N, Papageorgiou E, Anagnostis A, Feleki A (2020c) A deep-learning approach for diagnosis of metastatic breast cancer in bones from whole-body scans. Appl Sci 10:3. https://doi.org/10.3390/app10030997
Pi Y, Zhao Z, Xiang Y, Li Y, Cai H, Yi Z (2020) Automated diagnosis of bone metastasis based on multi-view bone scans using attention-augmented deep neural networks. Med Image Anal 65:101784. https://doi.org/10.1016/j.media.2020.101784
Apiparakoon T, Rakratchatakul N, Chantadisai M, Vutrapongwatana U, Kingpetch K, Sirisalipoch S, Rakvongthai Y, Chaiwatanarat T, Chuangsuwanich E (2020) MaligNet: semisupervised learning for bone besion instance segmentation using bone scintigraphy. IEEE Access 8:27047–27066. https://doi.org/10.1109/ACCESS.2020.2971391
Geng S, Jia S, Qiao Y, Yang J, Jia Z (2015) Combining CNN and MIL to assist hotspot segmentation in bone scintigraphy. In: International conference on neural information rocessing (ICONIP), Springer, LNCS, vol 9492, pp 445–452. https://doi.org/10.1007/978-3-319-26561-2_53
Zhao Z, Pi Y, Jiang L, Xiang Y, Wei J, Yang P, Zhang W, Zhong X, Zhou K, Li Y, Li L, Zhang Y, Cai H (2020) Deep neural network based artificial intelligence assisted diagnosis of bone scintigraphy for cancer bone metastasis. https://doi.org/10.21203/rs.3.rs-28656/v1
Xu H, Geng S, Qiao Y, Xu K, Gu Y (2020) Combining CGAN and MIL for hotspot segmentation in bone scintigraphy. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1404–1408. https://doi.org/10.1109/ICASSP40776.2020.9052946
Shimizu A, Wakabayashi H, Kanamori T, Saito A, Nishikawa K, Daisaki H, Higashiyama S, Kawabe J (2020) Automated measurement of bone scan index from a whole-body bone scintigram. Int J Comput Assist Radiol Surg 15(3):389–400. https://doi.org/10.1007/s11548-019-02105-x
Sekuboyina A, Rempfler M, Kukačka J, Tetteh G, Valentinitsch A, Kirschke JS, Menze BH (2018) Btrfly net: vertebrae labelling with energy-based adversarial learning of local spine prior. In: Medical image computing and computer-assisted intervention—MICCAI 2018, Springer, Cham, LNCS, vol 11073, pp 649–657. https://doi.org/10.1007/978-3-030-00937-3_74
Dou Q, Yu L, Chen H, Jin Y, Yang X, Qin J, Heng PA (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 41:40–54. https://doi.org/10.1016/j.media.2017.05.001
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778. https://doi.org/10.1109/CVPR.2016.90
He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 1026–1034. https://doi.org/10.1109/ICCV.2015.123
Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: International conference on learning representations (ICLR)
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention—MICCAI 2015, Springer, Cham, LNCS, vol 9351, pp 234–241. https://doi.org/10.1007/978-3-319-24574-4_28
Hara M, Saito A, Kawabe J, Higashiyama S, Daisaki H, Akinobu S (2020) Simultaneous process of skeleton segmentation and hot-spotextraction in a bone scintigram. In: 34th international congress and exhibition on computer assisted radiology and surgery, pp S23–S24
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
This manuscript has not been published elsewhere and is not under consideration for publication in another journal. All authors have approved the manuscript and agree with its submission to IJCARS. Authors Saito A and Shimizu A have received research grants and donation in 2016–2020 from Nihon Medi-Physics Co., Ltd. Authors Yoshida A, Higashiyama S, Kawabe J received research grants in 2016–2020 from Nihon Medi-Physics Co., Ltd. Author Daisaki H received research grants and honorarium in 2018 in his current position from Nihon Medi-Physics Co., Ltd., where he worked for until March 2017. Author Wakabayashi H has no conflict of interest. All procedures in this study involving human participants were performed in accordance with the ethical standards of the institutional research committees and the 1975 Helsinki declaration (as revised in 2008(5)).
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Saito, A., Wakabayashi, H., Daisaki, H. et al. Extraction of metastasis hotspots in a whole-body bone scintigram based on bilateral asymmetry. Int J CARS 16, 2251–2260 (2021). https://doi.org/10.1007/s11548-021-02488-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-021-02488-w