Orthodontic craniofacial pattern diagnosis: cephalometric geometry and machine learning | Medical & Biological Engineering & Computing Skip to main content
Log in

Orthodontic craniofacial pattern diagnosis: cephalometric geometry and machine learning

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Efficient and reliable diagnosis of craniofacial patterns is critical to orthodontic treatment. Although machine learning (ML) is time-saving and high-precision, prior knowledge should validate its reliability. This study proposed a craniofacial ML diagnostic workflow base on a cephalometric geometric model through clinical verification. A cephalometric geometric model was established to determine the landmark location by analyzing 408 X-ray lateral cephalograms. Through geometric information and feature engineering, nine supervised ML algorithms were conducted for sagittal and vertical skeleton patterns. After dimension reduction, plane decision boundary and landmark contribution contours were depicted to demonstrate the diagnostic consistency and the consistency with clinical norms. As a result, multi-layer perceptron achieved 97.56% accuracy for sagittal, while linear support vector machine reached 90.24% for the vertical. Sagittal diagnoses showed average superiority (91.60 ± 5.43)% over the vertical (82.25 ± 6.37)%, where discriminative algorithms exhibited more steady performance (93.20 ± 3.29)% than the generative (85.98 ± 9.48)%. Further, the Kruskal-Wallis H test was carried out to explore statistical differences in diagnoses. Though sagittal patterns had no statistical difference in diagnostic accuracy, the vertical showed significance. All aspects of the tests indicated that the proposed craniofacial ML workflow was highly consistent with clinical norms and could supplement practical diagnosis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are not publicly available due to the sensitive nature of patient privacy in this study, but are available from the corresponding author on reasonable request.

Abbreviations

ML:

machine learning

MPA:

mandibular plane angle

FH:

Frankfort horizontal plane

SN:

sella-nasion plane

COVID-19:

coronavirus disease

IoT:

Internet of Things

NN:

neural network

SVM:

support vector machine

CNN:

convolutional NN

HRA:

horizontal reference axis

VRA:

vertical reference axis

ANB:

subspinale-nasion-supramental angle

MP:

mandibular plane

MP-SN:

angle of the MP-SN

FH-MP:

angle of the FH-MP

G-algs:

generative algorithms

D-algs:

discriminative algorithms

KNN:

K-nearest neighbor

GaussianNB:

Gaussian Naive Bayes

MLP:

multi-layer perceptron

GPC:

Gaussian process classifier

XGBoost:

extreme gradient boosting

Adaboost:

adaptive boosting

QDA:

quadratic discriminant analysis

RF:

random forest

ROC:

receiver-operating characteristic curve

AUC:

area under the ROC

TPR:

true-positive rate

FPR:

false-positive rate

NTF:

number of top-ranking features

SD:

standard deviation

CI:

confidence interval

Truncated SVD:

truncated singular value decomposition

t-SNE:

t-distributed stochastic neighbor embedding

References

  1. Niño-Sandoval TC, Pérez SVG, González FA, Jaque RA, Infante-Contreras C (2016) An automatic method for skeletal patterns classification using craniomaxillary variables on a Colombian population. Forensic Sci Int 261:159.e1–159.e6. https://doi.org/10.1016/j.forsciint.2015.12.025

    Article  PubMed  Google Scholar 

  2. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J (2020) Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res 99:249–256. https://doi.org/10.1177/0022034520901715

    Article  CAS  PubMed  Google Scholar 

  3. Gomes AF, Moreira DD, Zanon MF, Groppo FC, Haiter-Neto F, Freitas DQ (2020) Soft tissue thickness in Brazilian adults of different skeletal classes and facial types: a cone beam CT–Study. Legal Med-Tokyo 47:101743. https://doi.org/10.1016/j.legalmed.2020.101743

    Article  Google Scholar 

  4. Angle EH (1899) Classification of malocclusion. Dental. Cosmos 41:248–264

    Google Scholar 

  5. Broadbent BH (1931) A new X-ray technique and its application to orthodontia. Angle Orthod 1:45–66. https://doi.org/10.1043/0003-3219(1931)001<0045:ANXTAI>2.0.CO;2

    Article  Google Scholar 

  6. Abdullah RTH, Kuijpers MAR, Bergé SJ, Katsaros C (2006) Steiner cephalometric analysis: predicted and actual treatment outcome compared. Orthod Craniofac Res 9:77–83. https://doi.org/10.1111/j.1601-6343.2006.00363.x

    Article  CAS  PubMed  Google Scholar 

  7. Downs WB (1948) Variations in facial relationships: their significance in treatment and prognosis. Am J Orthod Dentofacial Orthop 34:812–840. https://doi.org/10.1016/0002-9416(48)90015-3

    Article  CAS  Google Scholar 

  8. Steiner CC (1960) The use of cephalometrics as an aid to planning and assessing orthodontic treatment. Am J Orthod 46:721–735. https://doi.org/10.1016/0002-9416(60)90145-7

    Article  Google Scholar 

  9. Fu MK, Lin JX (2014) Orthodontics, 2nd edn. Peking University Medical Press, Peking

    Google Scholar 

  10. Arnett GW, Bergman RT (1993) Facial keys to orthodontic diagnosis and treatment planning. Part I. Am J Orthod Dentofacial Orthop 103:299–312. https://doi.org/10.1016/0889-5406(93)70010-L

    Article  CAS  PubMed  Google Scholar 

  11. Hirschfeld WJ, Moyers RE (1971) Prediction of craniofacial growth: the state of the art. Am J Orthod 60:435–444. https://doi.org/10.1016/0096-6347(46)90001-4

    Article  CAS  PubMed  Google Scholar 

  12. Ali US, Sukhia RH, Fida M, Aiman R (2022) Cephalometric predictors of optimal facial soft-tissue profile in adult Asian subjects with class II malocclusion treated via maxillary premolar extraction: a cross-sectional study. Am J Orthod Dentofacial Orthop 162:58–65. https://doi.org/10.1016/j.ajodo.2021.02.023

    Article  PubMed  Google Scholar 

  13. Alcañiz M, Montserrat C, Grau V, Chinesta F, Ramón A, Albalat S (1998) An advanced system for the simulation and planning of orthodontic treatment. Med Image Anal 2:61–77. https://doi.org/10.1016/S1361-8415(01)80028-1

    Article  PubMed  Google Scholar 

  14. Liu Z, Sun TH, Fan YB (2020) Biomechanical influence of anchorages on orthodontic space closing mechanics by sliding method. Med Biol Eng Comput 58:1091–1097. https://doi.org/10.1007/s11517-020-02149-1

    Article  PubMed  Google Scholar 

  15. Zhang J, Liu MX, Wang L, Chen S, Yuan P, Li JF et al (2020) Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization. Med Image Anal 60:101621. https://doi.org/10.1016/j.media.2019.101621

    Article  PubMed  Google Scholar 

  16. Mohammad-Rahimi H, Nadimi M, Rohban MR, Shamsoddin E, Lee VY, Motamedian SR (2021) Machine learning and orthodontics, current trends and the future opportunities: a scoping review. Am J Orthod Dentofacial Orthop 160:170–192. https://doi.org/10.1016/j.ajodo.2021.02.013

    Article  PubMed  Google Scholar 

  17. Bhosale YH, Patnaik KS (2023) PulDi-COVID: Chronic obstructive pulmonary (lung) diseases with COVID-19 classification using ensemble deep convolutional neural network from chest X-ray images to minimize severity and mortality rates. Biomed Signal Proces 81:104445. https://doi.org/10.1016/j.bspc.2022.104445

    Article  Google Scholar 

  18. Bhosale YH, Patnaik KS (2022) Application of deep learning techniques in diagnosis of Covid-19 (coronavirus): a systematic review. Neural Process Lett 16:1–53. https://doi.org/10.1007/s11063-022-11023-0

    Article  Google Scholar 

  19. Bhosale YH, Patnaik KS (2022) IoT deployable lightweight deep learning application for COVID-19 detection with lung diseases using RaspberryPi. In: 2022 International Conference on IoT and Blockchain Technology, ICIBT 2022. IEEE. https://doi.org/10.1109/ICIBT52874.2022.9807725

    Chapter  Google Scholar 

  20. Coiera E (2018) The fate of medicine in the time of AI. Lancet 392:2331–2332. https://doi.org/10.1016/S0140-6736(18)31925-1

    Article  PubMed  Google Scholar 

  21. Bichu YM, Hansa I, Bichu AY, Premjani P, Flores-Mir C, Vaid NR (2021) Applications of artificial intelligence and machine learning in orthodontics: a scoping review. Prog Orthod 22:18. https://doi.org/10.1186/s40510-021-00361-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. https://doi.org/10.1038/323533a0

    Article  Google Scholar 

  23. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297. https://doi.org/10.1023/A:1022627411411

    Article  Google Scholar 

  24. Urschler M, Ebner T, Štern D (2018) Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization. Med Image Anal 43:23–26. https://doi.org/10.1016/j.media.2017.09.003

    Article  PubMed  Google Scholar 

  25. Zeng MM, Yan ZL, Liu S, Zhou YH, Qiu LX (2021) Cascaded convolutional networks for automatic cephalometric landmark detection. Med Image Anal 68:101904. https://doi.org/10.1016/j.media.2020.101904

    Article  PubMed  Google Scholar 

  26. Jeon S, Lee KC (2021) Comparison of cephalometric measurements between conventional and automatic cephalometric analysis using convolutional neural network. Prog Orthod 22:14. https://doi.org/10.1186/s40510-021-00358-4

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lin G, Kim PJ, Baek SH, Kim HG, Kim SW, Chung JH (2021) Early prediction of the need for orthognathic surgery in patients with repaired unilateral cleft lip and palate using machine learning and longitudinal lateral cephalometric analysis data. J Craniofac Surg 32:616–620. https://doi.org/10.1097/SCS.0000000000006943

    Article  PubMed  Google Scholar 

  28. Yuan TR, Wang YM, Hou ZW, Wang J (2020) Tooth segmentation and gingival tissue deformation framework for 3D orthodontic treatment planning and evaluating. Med Biol Eng Comput 58:2271–2290. https://doi.org/10.1007/s11517-020-02230-9

    Article  PubMed  Google Scholar 

  29. Kök H, Acilar AM, İzgi MS (2019) Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog Orthod 20:41. https://doi.org/10.1186/s40510-019-0295-8

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chun YZ, Lee YJ, Kim MJ, Kim HS (2022) Experimental studies for the progressive assessment of stress distributions on orthodontic archwire. Med Biol Eng Comput 61:297–304. https://doi.org/10.1007/s11517-022-02718-6

    Article  PubMed  Google Scholar 

  31. Khosravi-Kamrani P, Qiao XY, Zanardi G, Wiesen CA, Slade G, Frazier-Bowers SA (2022) A machine learning approach to determine the prognosis of patients with class III malocclusion. Am J Orthod Dentofacial Orthop 161:e1–e11. https://doi.org/10.1016/j.ajodo.2021.06.012

    Article  PubMed  Google Scholar 

  32. Nan L, Tang M, Liang BH, Mo SX, Kang N, Song SH et al (2023) Automated sagittal skeletal classification of children based on deep learning. Diagnostics 13:1719. https://doi.org/10.3390/diagnostics13101719

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tweed CH (1946) The Frankfort-mandibular plane angle in orthodontic diagnosis, classification, treatment planning and prognosis. Am J Orthod Oral Surg 32:175–230. https://doi.org/10.1016/0096-6347(46)90001-4

    Article  CAS  PubMed  Google Scholar 

  34. Salzmann JA (1945) The maxillator: a new instrument for measuring the Frankfort-mandibular base angle, the incisor-mandibular base angle, and other component parts of the face and jaws. Am J Orthod Oral Surg 31:608–617. https://doi.org/10.1016/S0096-6347(45)90070-6

    Article  CAS  PubMed  Google Scholar 

  35. Angel aligner: iOrtho [software]. Version 9.2.0. Shanghai (CN): Shanghai EA Medical Instruments Company Limited, 2022. Available from: https://iortho.angelalign.com/v9_9/workbench

  36. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830. https://doi.org/10.5555/1953048.2078195

    Article  Google Scholar 

  37. Sun YM, Kamel MS, Wang Y (2006) Boosting for learning multiple classes with imbalanced class distribution. In: Proceedings of the Sixth International Conference on Data Mining. USA, IEEE Computer Society, pp 592–602. https://doi.org/10.1109/ICDM.2006.29

    Chapter  Google Scholar 

  38. He HB, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21:1263–1284. https://doi.org/10.1109/TKDE.2008.239

    Article  Google Scholar 

  39. Migut MA, Worring M, Veenman CJ (2015) Visualizing multi-dimensional decision boundaries in 2D. Data Min Knowl Disc 29:273–295. https://doi.org/10.1007/s10618-013-0342-x

    Article  Google Scholar 

  40. Maaten LVD, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html

    Google Scholar 

  41. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.2307/2280779

    Article  Google Scholar 

  42. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:1–62

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 62076011) and the Research Foundation of Peking University School and Hospital of Stomatology, Peking, China (grant number PKUSS20200114).

Author information

Authors and Affiliations

Authors

Contributions

Yuqing Zhou proposed the methodology, conducted the investigation and data analysis, and wrote the original/revised manuscript. Bochun Mao, Jiwu Zhang, and Jing Li acquired resources and curated data. Jiwu Zhang, Yanheng Zhou, Jing Li, and Qiguo Rong contributed to the conception. Jing Li and Qiguo Rong helped with manuscript editing and revision. All authors approved the submitted version.

Corresponding authors

Correspondence to Jing Li or Qiguo Rong.

Ethics declarations

Ethics approval and consent to participate

The institutional review board approved the retrospective study of Peking University School and Hospital of Stomatology (no. PKUSSIRB-202058135). All the patients received orthodontic treatment and informed consent to this study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Mao, B., Zhang, J. et al. Orthodontic craniofacial pattern diagnosis: cephalometric geometry and machine learning. Med Biol Eng Comput 61, 3345–3361 (2023). https://doi.org/10.1007/s11517-023-02919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02919-7

Keywords

Navigation