Hybrid machine learning method for a connectivity-based epilepsy diagnosis with resting-state EEG | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Hybrid machine learning method for a connectivity-based epilepsy diagnosis with resting-state EEG

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study investigates the performance of a convolutional neural network (CNN) algorithm on epilepsy diagnosis. Without pathology, diagnosis involves long and costly electroencephalographic (EEG) monitoring. Novel approaches may overcome this by comparing brain connectivity using graph metrics. This study, however, uses deep learning to learn connectivity patterns directly from easily acquired EEG data. A CNN algorithm was applied on directed Granger causality (GC) connectivity measures, derived from 50 s of resting-state surface EEG recordings from 30 subjects with epilepsy and a 30 subject control group. The trained CNN filters reflected reduced delta band connectivity in frontal regions and increased left lateralized frontal-posterior gamma band connectivity. A diagnosis accuracy of 85% (F1 score 85%) was achieved by an ensemble of CNN models, each trained on differently prepared data from different electrode combinations. Appropriate preparation of connectivity data enables generic CNN algorithms to be used for detection of multiple discriminative epileptic features. Differential patterns revealed in this study may help to shed light on underlying altered cognitive abilities in epilepsy patients. The accuracy achieved in this study shows that, in combination with other methods, this approach could prove a valuable clinical decision support system for epilepsy diagnosis.

Graphical abstract

1: EEG measurements and subsequent connectivity calculation, 2: training of a neural network on resulting connectivity matrices, 3: extraction of most efficient CNN filters, which are neuromarker for epilepsy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cilasun MH, Yalcin H (2016) A deep learning approach to EEG based epilepsy seizure determination

  2. Hussein R (2019) Scalp and intracranial EEG quantitative analysis robust detection and prediction of epileptic seizures. The University of British Colombia

  3. Gadhoumi K, Lina JM, Mormann F, Gotman J (2016) Seizure prediction for therapeutic devices: a review. J. Neurosci. Methods

  4. Zhang Y, Yang S, Liu Y et al (2018) Integration of 24 feature types to accurately detect and predict seizures using scalp EEG signals. Sensors (Switzerland). https://doi.org/10.3390/s18051372

    Article  PubMed Central  Google Scholar 

  5. Yadollahpour A, Jalilifar M (2014) Seizure prediction methods: a review of the current predicting techniques. Biomed Pharmacol J. https://doi.org/10.13005/bpj/466

    Article  Google Scholar 

  6. Smith SJM (2005) EEG in the diagnosis, classification, and management of patients with epilepsy. Neurol. Pract.

  7. Bernhardt BC, Bonilha L, Gross DW (2015) Network analysis for a network disorder: the emerging role of graph theory in the study of epilepsy. Epilepsy Behav.

  8. Ktena SI, Parisot S, Ferrante E, et al (2017) Distance metric learning using graph convolutional networks: application to functional brain networks. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  9. Anirudh R, Thiagarajan JJ (2019) Bootstrapping graph convolutional neural networks for autism spectrum disorder classification. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

  10. Yang J, Zhu Q, Zhang R et al (2020) Unified brain network with functional and structural data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Cham., pp 114–123

    Google Scholar 

  11. Huang J, Zhou L, Wang L, Zhang D (2020) Attention-diffusion-bilinear neural network for brain network analysis. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2020.2973650

    Article  PubMed  PubMed Central  Google Scholar 

  12. Protopapa F, Siettos CI, Myatchin I, Lagae L (2016) Children with well controlled epilepsy possess different spatio-temporal patterns of causal network connectivity during a visual working memory task. Cogn Neurodyn. https://doi.org/10.1007/s11571-015-9373-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dasgupta A, Das R, Nayak L, De RK (2015) Analyzing epileptogenic brain connectivity networks using clinical EEG data. In: Proceedings - 2015 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2015

  14. Sargolzaei S, Cabrerizo M, Sargolzaei A et al (2015) A probabilistic approach for pediatric epilepsy diagnosis using brain functional connectivity networks. BMC Bioinformatics. https://doi.org/10.1186/1471-2105-16-S7-S9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rajaei H, Cabrerizo M, Sargolzaei S, et al (2015) Pediatric epilepsy: clustering by functional connectivity using phase synchronization. In: IEEE Biomedical Circuits and Systems Conference: Engineering for Healthy Minds and Able Bodies, BioCAS 2015 - Proceedings

  16. Coito A, Michel CM, Van Mierlo P et al (2016) Directed functional brain connectivity based on EEG source imaging: methodology and application to temporal lobe epilepsy. IEEE Trans Biomed Eng. https://doi.org/10.1109/TBME.2016.2619665

    Article  PubMed  Google Scholar 

  17. Verhoeven T, Coito A, Plomp G et al (2018) Automated diagnosis of temporal lobe epilepsy in the absence of interictal spikes. NeuroImage Clin. https://doi.org/10.1016/j.nicl.2017.09.021

    Article  PubMed  Google Scholar 

  18. Marino AC, Yang GJ, Tyrtova E et al (2019) Resting state connectivity in neocortical epilepsy: the epilepsy network as a patient-specific biomarker. Clin Neurophysiol. https://doi.org/10.1016/j.clinph.2018.11.016

    Article  PubMed  Google Scholar 

  19. Dumlu SN, Ademoğlu A, Sun W (2020) Investigation of functional variability and connectivity in temporal lobe epilepsy: a resting state fMRI study. Neurosci Lett. https://doi.org/10.1016/j.neulet.2020.135076

    Article  PubMed  Google Scholar 

  20. Clemens B, Puskás S, Bessenyei M et al (2011) EEG functional connectivity of the intrahemispheric cortico-cortical network of idiopathic generalized epilepsy. Epilepsy Res. https://doi.org/10.1016/j.eplepsyres.2011.04.011

    Article  PubMed  Google Scholar 

  21. Dupont S, Samson Y, Van de Moortele PF et al (2002) Bilateral hemispheric alteration of memory processes in right medial temporal lobe epilepsy. J Neurol Neurosurg Psychiatry. https://doi.org/10.1136/jnnp.73.5.478

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vlooswijk MCG, Jansen JFA, de Krom MCFTM, et al (2010) Functional MRI in chronic epilepsy: associations with cognitive impairment. Lancet Neurol.

  23. Zhang Z, Lu G, Zhong Y et al (2010) Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res. https://doi.org/10.1016/j.brainres.2010.01.042

    Article  PubMed  PubMed Central  Google Scholar 

  24. Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci. https://doi.org/10.1016/j.tics.2006.11.004

    Article  PubMed  Google Scholar 

  25. Liao W, Zhang Z, Pan Z et al (2011) Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Hum Brain Mapp. https://doi.org/10.1002/hbm.21076

    Article  PubMed  PubMed Central  Google Scholar 

  26. Obeid I, Picone J (2016) The temple university hospital EEG data corpus. Front Neurosci. https://doi.org/10.3389/fnins.2016.00196

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shah V, von Weltin E, Lopez S et al (2018) The temple university hospital seizure detection corpus. Front Neuroinform. https://doi.org/10.3389/fninf.2018.00083

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rijnders B (2021) Machine learning and EEG in epilepsy [Master’s Thesis, Yeditepe University]. Open Access. https://acikbilim.yok.gov.tr/handle/20.500.12812/340593

  29. Tadel F, Baillet S, Mosher JC et al (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci. https://doi.org/10.1155/2011/879716

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stam CJ (2014) Modern network science of neurological disorders. Nat. Rev. Neurosci.

  31. Van Diessen E, Diederen SJH, Braun KPJ, et al (2013) Functional and structural brain networks in epilepsy: what have we learned? Epilepsia

  32. Jiang LW, Qian RB, Fu XM et al (2018) Altered attention networks and DMN in refractory epilepsy: a resting-state functional and causal connectivity study. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2018.06.045

    Article  PubMed  Google Scholar 

  33. Wang B, Meng L (2016) Functional brain network alterations in epilepsy: a magnetoencephalography study. Epilepsy Res. https://doi.org/10.1016/j.eplepsyres.2016.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu X, Li R, Fleisher AS et al (2011) Altered default mode network connectivity in Alzheimer’s disease—a resting functional MRI and Bayesian network study. Hum Brain Mapp. https://doi.org/10.1002/hbm.21153

    Article  PubMed  PubMed Central  Google Scholar 

  35. Doucet G, Osipowicz K, Sharan A et al (2013) Extratemporal functional connectivity impairments at rest are related to memory performance in mesial temporal epilepsy. Hum Brain Mapp. https://doi.org/10.1002/hbm.22059

    Article  PubMed  Google Scholar 

  36. Bettus G, Guedj E, Joyeux F et al (2009) Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp. https://doi.org/10.1002/hbm.20625

    Article  PubMed  Google Scholar 

  37. Xia LVZ, Hong HD, Ye W et al (2014) Alteration of functional connectivity within visuospatial working memory-related brain network in patients with right temporal lobe epilepsy: a resting-state fMRI study. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2014.04.001

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Ali Uslu and Dr. Seda Dumlu for their proofreading assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berjo Rijnders.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rijnders, B., Korkmaz, E.E. & Yildirim, F. Hybrid machine learning method for a connectivity-based epilepsy diagnosis with resting-state EEG. Med Biol Eng Comput 60, 1675–1689 (2022). https://doi.org/10.1007/s11517-022-02560-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02560-w

Keywords

Navigation