A multi-layered hybrid model for cancer cell invasion | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

A multi-layered hybrid model for cancer cell invasion

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this article, a hybrid model is developed based on multi-scale concept for solid  tumour cell invasion into a healthy tissue. Our aim is to study the tumour heterogeneity due to the geometry of a growing tumour caused by the phenotypic transformations of cells. In this context, an early vascular growth is considered after angiogenesis. Hence, the microenvironment of the solid tumour is rich of oxygen and nutrients. It is also considered that epidermal growth factor (EGF) is distributed into the surrounding extracellular matrix (ECM) of the tumour. The developed multi-layered model consists of three layers: intracellular or subcellular, cellular, and extracellular or tissue layer. The model integrates the events that occur simultaneously in these three layers to identify the underlying diversity. Here, every cell is represented as an agent. Characteristics of an agent are controlled by its intracellular protein expressions and its surrounding microenvironment. A mature proliferative or migratory or hybrid cell agent spawn two indistinguishable children unless it may convert into other phenotype due to influence of the microenvironment. Further, a simple cell cycle model is adapted which is influenced by EGF-EGFR signalling pathway and the external oxygen and nutrients. Moreover, migratory and hybrid cells secrete several matrix degrading enzymes (MDEs) which remodel the ECM for tumour invasion locally. Several biomechanical forces are considered that simultaneously act on the cancer cells. The outcome of the model is very similar to the results reported in earlier studies. The model shows the characteristics of cancer invasion that include sustainable proliferation by ignoring growth suppressor signals and reproduction of cancer cells at abnormal proportion, restrict apoptosis, and invade into the surrounding tissue. As the simulation parameters get modified due to different biochemical and biophysical processes, the robustness of the model is determined. It is found that only a number of proliferative cells are moderately sensitive to the parameters and others are less-sensitive.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Alarcón T, Byrne HM, Maini PK (2004) A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. J Theor Biol 229(3):395–411

    Article  PubMed  Google Scholar 

  2. Ambrosi D, Preziosi L (2002) On the closure of mass balance models for tumor growth. Mathe Mod Methods Appl Sci 12(05):737–754

    Article  Google Scholar 

  3. Andasari V, Gerisch A, Lolas G, South AP, Chaplain MA (2011) Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation. J Mathe Biol 63(1):141–171

    Article  Google Scholar 

  4. Anderson AR, Chaplain MA, Newman EL, Steele RJ, Thompson AM (2000) Mathematical modelling of tumour invasion and metastasis. Comput Mathe Methods Med 2(2):129–154

    Google Scholar 

  5. Athale C, Mansury Y, Deisboeck TS (2005) Simulating the impact of a molecular ‘decision-process’ on cellular phenotype and multicellular patterns in brain tumors. J Theor Biol 233(4):469–481

    Article  CAS  PubMed  Google Scholar 

  6. Basu SK, Roy A (2004) Computer simulation of long-term vegetation status in landslide-prone areas in the Himalayan region. Simulation 80(10):511–525

    Article  Google Scholar 

  7. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15(12):786–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brightman FA, Fell DA (2000) Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett 482(3):169–174

    Article  CAS  PubMed  Google Scholar 

  9. Brognard J, Dennis PA (2002) Variable apoptotic response of NSCLC cells to inhibition of the MEK/ERK pathway by small molecules or dominant negative mutants. Cell Death Differ 9(9):893–904

    Article  CAS  PubMed  Google Scholar 

  10. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  CAS  PubMed  Google Scholar 

  11. Chaplain MA, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system. Mathe Mod Methods Appl Sci 15(11):1685–1734

    Article  CAS  Google Scholar 

  12. Chaplain MA, Lolas G (2006) Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw Heterog Media 1(3):399

    Article  Google Scholar 

  13. Chaplain MA, Lachowicz M, Szymanska Z, Wrzosek D (2011) Mathematical modelling of cancer invasion: the importance of cell–cell adhesion and cell–matrix adhesion. Mathe Mod Methods Appl Sci 21(04):719–743

    Article  CAS  Google Scholar 

  14. Chen Y, Wang H, Zhang J, Chen K, Li Y (2015) Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions. Sci Rep 5(1):1–10

    Google Scholar 

  15. Chicoine MR, Silbergeld DL (1997) Mitogens as motogens. J Neuro-Oncol 35(3):249–257

    Article  CAS  Google Scholar 

  16. Collier IE, Legant W, Marmer B, Lubman O, Saffarian S, Wakatsuki T, … Goldberg GI (2011) Diffusion of MMPs on the surface of collagen fibrils: the mobile cell surface–collagen substratum interface. PLoS One 6(9):e24029

  17. Cook LM, Araujo A, Pow-Sang JM, Budzevich MM, Basanta D, Lynch CC (2016) Predictive computational modeling to define effective treatment strategies for bone metastatic prostate cancer. Sci Rep 6(1):1–12

    Article  Google Scholar 

  18. Deakin N, Chaplain MA (2013) Mathematical modeling of cancer invasion: the role of membrane-bound matrix metalloproteinases. Front Oncol 3:70

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dittmar T, Husemann A, Schewe Y, Nofer JR, Niggemann B, Zänker KS, Brandt BH (2002) Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via epidermal growth factor receptor. FASEB J 16(13):1–21

    Article  Google Scholar 

  20. Domschke P, Trucu D, Gerisch A, Chaplain MA (2014) Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns. J Theor Biol 361:41–60

    Article  PubMed  Google Scholar 

  21. Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20(2):69–84

    Article  CAS  PubMed  Google Scholar 

  22. Ehrlén J, Van Groenendael J, De Kroon H (2001) Reliability of elasticity analysis: reply to Mills et al. Conserv Biol 15(1):278–280

  23. Franssen LC, Chaplain MA (2020) A mathematical multi-organ model for bidirectional epithelial–mesenchymal transitions in the metastatic spread of cancer. IMA J Appl Mathe 85(5):724–761

    Article  Google Scholar 

  24. Franssen LC, Lorenzi T, Burgess AE, Chaplain MA (2019) A mathematical framework for modelling the metastatic spread of cancer. Bull Mathe Biol 81(6):1965–2010

    Article  CAS  Google Scholar 

  25. Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gardner LB, Li Q, Park MS, Flanagan WM, Semenza GL, Dang CV (2001) Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem 276(11):7919–7926

    Article  CAS  PubMed  Google Scholar 

  27. Gerisch A, Chaplain MA (2008) Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J Theor Biol 250(4):684–704

    Article  CAS  PubMed  Google Scholar 

  28. Hackel PO, Zwick E, Prenzel N, Ullrich A (1999) Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11(2):184–189

    Article  CAS  PubMed  Google Scholar 

  29. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  30. Handler J, Cullis J, Avanzi A, Vucic EA, Bar-Sagi D (2018) Pre-neoplastic pancreas cells enter a partially mesenchymal state following transient TGF-β exposure. Oncogene 37(31):4334–4342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hatakeyama M, Kimura S, Naka T, Kawasaki T, Yumoto N, Ichikawa M, … Yokoyama S (2003) A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J 373(2):451–46

  32. Hendriks BS, Griffiths GJ, Benson R, Kenyon D, Lazzara M, Swinton J, … De Graaf D (2006) Decreased internalisation of erbB1 mutants in lung cancer is linked with a mechanism conferring sensitivity to gefitinib. IEE Proc-Syst Biol 153(6):457–466

  33. Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26(3–4):489–502

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hirsch FR, Varella-Garcia M, Bunn Jr PA, Di Maria MV, Veve R, Bremnes RM, … Franklin WA (2003) Epidermal growth factor receptor in non–small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21(20):3798–3807

  35. Hoehme S, Drasdo D (2010) Biomechanical and nutrient controls in the growth of mammalian Cell populations. Mathe Popul Stud 17(3):166–187

    Article  Google Scholar 

  36. Jenerette GD, Wu J (2001) Analysis and simulation of land-use change in the central Arizona-Phoenix region, USA. Landsc Ecol 16(7):611–626

    Article  Google Scholar 

  37. Kawamata H, Nakashiro KI, Uchida D, Harada K, Yoshida H, Sato M (1997) Possible contribution of active MMP2 to lymph-node metastasis and secreted cathepsin L to bone invasion of newly established human oral-squamous-cancer cell lines. Int J Cancer 70(1):120–127

    Article  CAS  PubMed  Google Scholar 

  38. Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274(42):30169–30181

    Article  CAS  PubMed  Google Scholar 

  39. Law AM, Kelton WD, Kelton WD (2000) Simulation modelling and analysis, vol 3. McGraw-Hill, New York

    Google Scholar 

  40. Lehembre F, Yilmaz M, Wicki A, Schomber T, Strittmatter K, Ziegler D, Kren A, Went P, Derksen PW, Berns A, Jonkers J, Christofori G (2008) NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J 27(19):2603–2615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li M, Lee TW, Yim AP, Mok TS, Chen GG (2006) Apoptosis induced by troglitazone is both peroxisome proliferator-activated receptor-γ-and ERK-dependent in human non-small lung cancer cells. J Cell Physiol 209(2):428–438

    Article  CAS  PubMed  Google Scholar 

  42. Liotta LA (1992) Cancer cell invasion and metastasis. Sci Am 266(2):54–63

    Article  CAS  PubMed  Google Scholar 

  43. Lovisa S, LeBleu VS, Tampe B, Sugimoto H, Vadnagara K, Carstens JL, … Nischal H (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21(9):998–1009

  44. Lozano E, Betson M, Braga VM (2003) Tumour progression: small GTPases and loss of cell–cell adhesion. Bioessays 25(5):452–463

    Article  CAS  PubMed  Google Scholar 

  45. Macklin P, Edgerton ME, Thompson AM, Cristini V (2012) Patient-calibrated agent-based modelling of ductal carcinoma in situ (DCIS): from microscopic measurements to macroscopic predictions of clinical progression. J Theor Biol 301:122–140

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2):179–185

    Article  CAS  PubMed  Google Scholar 

  47. Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT (2012) Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 136(2):331–345

    Article  CAS  PubMed  Google Scholar 

  48. Montell DJ (2008) Morphogenetic cell movements: diversity from modular mechanical properties. Science 322(5907):1502–1505

    Article  CAS  PubMed  Google Scholar 

  49. Mouneimne G, Soon L, DesMarais V, Sidani M, Song X, Yip SC, … Condeelis J (2004) Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol 166(5):697–708

  50. Pastushenko I, Blanpain C (2019) EMT transition states during tumor progression and metastasis. Trends Cell Biol 29(3):212–226

    Article  CAS  PubMed  Google Scholar 

  51. Perfahl H, Byrne HM, Chen T, Estrella V, Alarcón T, Lapin A, Gateny RA, Gillies RJ, Lloyd MC, Maini PK, Reuss M, Owen MR (2011) Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PloS One 6(4):e14790

  52. Price JT, Wilson HM, Haites NE (1996) Epidermal growth factor (EGF) increases the in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. Eur J Cancer 32(11):1977–1982

    Article  Google Scholar 

  53. Putnam EA, Yen N, Gallick GE, Steck PA, Fang K, Akpakip B, Roth JA (1992) Autocrine growth stimulation by transforming growth factor-α in human non-small cell lung cancer. Surg Oncol 1(1):49–60

  54. Resat H, Ewald JA, Dixon DA, Wiley HS (2003) An integrated model of epidermal growth factor receptor trafficking and signal transduction. Biophys J 85(2):730–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ribba B, Boetsch C, Nayak T, Grimm HP, Charo J, Evers S, Teichgräber V (2018) Prediction of the optimal dosing regimen using a mathematical model of tumor uptake for immunocytokine-based cancer immunotherapy. Clin Cancer Res 24(14):3325–3333

  56. Rocha HL, Almeida RC, Lima EABF, Resende ACM, Oden JT, Yankeelov TE (2018) A hybrid three-scale model of tumor growth. Mathe Mod Methods Appl Sci 28(01):61–93

    Article  CAS  Google Scholar 

  57. Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell–ECM interactions to tissue engineering. J Cellul Physiol 199(2):174–180

    Article  CAS  Google Scholar 

  58. Rusch V, Baselga J, Cordon-Cardo C, Orazem J, Zaman M, Hoda S, … Dmitrovsky E (1993) Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer Res53(10):2379–2385

  59. Sadhukhan S, Mishra PK, Basu SK, Mandal JK (2021) Multi-scale agent-based model for avascular tumour growth. (under review)

  60. Sannino G, Marchetto A, Kirchner T, Grünewald TG (2017) Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in mesenchymal tumors: a paradox in sarcomas? Cancer Res 77(17):4556–4561

    Article  CAS  PubMed  Google Scholar 

  61. Santos SD, Verveer PJ, Bastiaens PI (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9(3):324–330

    Article  CAS  PubMed  Google Scholar 

  62. Sasagawa S, Ozaki YI, Fujita K, Kuroda S (2005) Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 7(4):365–373

    Article  CAS  PubMed  Google Scholar 

  63. Schoeberl B, Eichler-Jonsson C, Gilles ED, Müller G (2002) Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat Biotechnol 20(4):370–375

    Article  PubMed  Google Scholar 

  64. Seiki M (2003) Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194(1):1–11

    Article  CAS  PubMed  Google Scholar 

  65. Sherratt JA, Gourley SA, Armstrong NJ, Painter KJ (2009) Boundedness of solutions of a non-local reaction-diffusion model for adhesion in cell aggregation and cancer invasion. Eur J Appl Mathe 20(1):123

    Article  CAS  Google Scholar 

  66. Slodkowska EA, Cribier B, Peltre B, Jones DM, Carlson JA (2010) Calcifications associated with basal cell carcinoma: prevalence, characteristics, and correlations. Am J Dermatopathol 32(6):557–564

    Article  PubMed  Google Scholar 

  67. Storer NP, Peck SL, Gould F, Van Duyn JW, Kennedy GG (2003) Sensitivity analysis of a spatially-explicit stochastic simulation model of the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. J Econ Entomol 96(1):173–187

    Article  PubMed  Google Scholar 

  68. Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA (2004) Snail blocks the cell cycle and confers resistance to cell death. Genes Dev 18(10):1131–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vicent S, Garayoa M, López-Picazo JM, Lozano MD, Toledo G, Thunnissen FB, … Montuenga LM (2004) Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res10(11):3639–3649

  70. Wang Z, Zhang L, Sagotsky J, Deisboeck TS (2007) Simulating non-small cell lung cancer with a multiscale agent-based model. Theor Biol Med Modell 4(1):50

    Article  CAS  Google Scholar 

  71. Werfel J, Krause S, Bischof AG, Mannix RJ, Tobin H, Bar-Yam Y, … Ingber DE (2013) How changes in extracellular matrix mechanics and gene expression variability might combine to drive cancer progression. PLoS One 8(10):e76122

  72. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11(7):512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xue C, Wyckoff J, Liang F, Sidani M, Violini S, Tsai KL, … Segall JE (2006) Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo co-ordinately with enhanced intravasation and metastasis. Cancer Res 66(1):192–197

  74. Zetter BR (1998) Angiogenesis and tumor metastasis. Ann Rev Med 49(1):407–424

    Article  CAS  PubMed  Google Scholar 

  75. Zhang L, Athale CA, Deisboeck TS (2007) Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor Biol 244(1):96–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Nitish Thakor, Editor-in-Chief, Medical & Biological Engineering & Computing Journal for being supportive towards the publication of this paper. We show our sincere gratitude to the anonymous reviewers, whose valuable comments helped us greatly to improve this article. We are also thankful to Dr. S. K. Basu for his contribution in this article. The first author of this paper is thankful to the University Grant Commission, Government of India for supporting him with a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sounak Sadhukhan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Algorithm for determining the net acting force, velocity, and the position of a cell:

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, S., Mishra, P.K. A multi-layered hybrid model for cancer cell invasion. Med Biol Eng Comput 60, 1075–1098 (2022). https://doi.org/10.1007/s11517-022-02514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02514-2

Keywords

Navigation