Breast cancer diagnosis with a microwave thermoacoustic imaging technique—a numerical approach | Medical & Biological Engineering & Computing
Skip to main content

Breast cancer diagnosis with a microwave thermoacoustic imaging technique—a numerical approach

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Microwave-induced thermoacoustic imaging (MITAI) is an imaging technique with great potential for detecting breast cancer at early stages. Thermoacoustic imaging (TAI) combines the advantages of both microwave and ultrasound imaging techniques. In the current study, a three-dimensional novel numerical simulation of TAI phenomenon as a multi-physics problem is investigated. In the computational domain, a biological breast tissue including three different tissue types along with a tumor is placed in a tank containing castor oil and is irradiated by a 2.45-GHz pulsed microwave source from a rectangular waveguide. The generated heat in the biological tissue due to the electromagnetic wave irradiation and its corresponding pressure gradient in the tissue because of the temperature variations are evaluated. Also, capability of the MITAI process with respect to the tumor location and size is investigated. To identify the required power level needed for producing thermoacoustic signals, different power levels of microwave sources are investigated. The study’s results demonstrate a minuscule increase in temperature as a result of the absorption of pulsed microwave energy (for example, a maximum of 0.002472 °C temperature increase in tumor with 1 cm diameter which is located in fatty tissue of breast are obtained due to an excitation pulse of 1000 W, 1 ms). This small temperature variation in the tumor produces several kilopascals of pressure variations with maximum of 0.584016 kPa in tumor. This pressure variation will produce acoustic signals, which can be detected with an array of transducers and be used for image construction. Results demonstrate that the location of tumor in breast plays a vital role on the detecting performance of MITAI. Also, it is shown that very small tumors (with the diameter of 0.5 cm) can also be detected using MITAI technique. These simulations and procedures can be used for determining the amount of produced pressure variation, the acoustic pressure magnitude, and other complicated geometries.

A schematic of the thermoacoustic phenomenon

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Adler DD, Carson PL, Rubin JM, Quinn-Reid D (1990) Doppler ultrasound color flow imaging in the study of breast cancer: preliminary findings. Ultrasound Med Biol 16:553–559. https://doi.org/10.1016/0301-5629(90)90020-D

    Article  CAS  PubMed  Google Scholar 

  2. Ahmadian MT, Nikooyan AA (2006) Modeling and prediction of soft tissue directional stiffness using in-vitro force displacement data. Int J Sci Res 16:385–389

    Google Scholar 

  3. Baran A, LoVetri J, Kurrant D, Fear E (2017 XXXIInd, 2017. IEEE) Immersion medium independent microwave breast imaging. In: General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), pp 1–4

    Google Scholar 

  4. Bazmara H, Soltani M, Sefidgar M, Bazargan M, Naeenian MM, Rahmim A (2016) Blood flow and endothelial cell phenotype regulation during sprouting angiogenesis. Med Biol Eng Comput 54:547–558

    Article  PubMed  Google Scholar 

  5. Bindu G, Lonappan A, Thomas V, Aanandan CK, Mathew KT (2006) Active microwave imaging for breast cancer detection. Prog Electromagn Res 58:149–169

    Article  Google Scholar 

  6. Chanmugam AS, Hatwar R, Herman C (2012) Thermal analysis of cancerous breast model. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) 2:135–143. https://doi.org/10.1115/IMECE2012-88244

  7. Chen EJ, Novakofski J, Jenkins WK, O’Brien WD (1996) Young’s modulus measurements of soft tissues with application to elasticity imaging. IEEE Trans Ultrason Ferroelectr Freq Control 43:191–194

    Article  Google Scholar 

  8. Cui Y, Yuan C, Ji Z (2017) A review of microwave-induced thermoacoustic imaging: excitation source, data acquisition system and biomedical applications. J Innov Opt Health Sci 10:1730007

    Article  Google Scholar 

  9. Ding W, Ji Z, Xing D (2017) Microwave-excited ultrasound and thermoacoustic dual imaging. Appl Phys Lett 110:183701

    Article  CAS  Google Scholar 

  10. Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW (1998) Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med 338:1089–1096. https://doi.org/10.1056/NEJM199804163381601

    Article  CAS  PubMed  Google Scholar 

  11. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  12. Gefen A, Dilmoney B (2007) Mechanics of the normal woman’s breast. Technol Health Care 15:259–271

    PubMed  Google Scholar 

  13. George T, Rufus E, Alex ZC (2015) Simulation of microwave induced thermoacoustical imaging technique for cancer detection. ARPN J Eng Appl Sci 10(20): 9424–9428

  14. Gong W, Chen G, Zhao Z, Nie Z (2009) Estimation of threshold noise suppression algorithm in microwave induced thermoacoustic tomography. Paper presented at the Asia Pacific Microwave Conference, Singapore, 2009, pp. 653–656. https://doi.org/10.1109/APMC.2009.53

  15. Guo B, Li J, Zmuda H, Sheplak M (2007) Multifrequency microwave-induced thermal acoustic imaging for breast cancer detection. IEEE Trans Biomed Eng 54:2000–2010. https://doi.org/10.1109/TBME.2007.895108

    Article  PubMed  Google Scholar 

  16. Holmes KR Thermal conductivity data for specific tissues and organs for humans and other mammalian species. Thermal Properties. http://users.ece.utexas.edu/~valvano/research/Thermal.pdf

  17. Jin X, Wang LV (2006) Thermoacoustic tomography with correction for acoustic speed variations. Phys Med Biol 51:6437–6448. https://doi.org/10.1088/0031-9155/51/24/010

    Article  PubMed  Google Scholar 

  18. Jing Z, Niklason L, Stein J, Shaw I, Defreitas K, Farbizio T, Ruth C, Ren B, Smith A (2007) X-ray mammography/tomosynthesis of patient’s breast. Patent US7881428B2, issued February 1, 2011. https://patents.google.com/patent/US7881428B2/en

  19. Johansson I, Ringnér M, Hedenfalk I (2013) The landscape of candidate driver genes differs between male and female breast cancer. PLoS One 8:e78299. https://doi.org/10.1371/journal.pone.0078299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kam EWS, So RMC, Fu SC (2016) One-step simulation of thermoacoustic waves in two-dimensional enclosures. Comput Fluids 140:270–288

    Article  Google Scholar 

  21. Kruger RA, Miller KD, Reynolds HE, Kiser WL Jr, Reinecke DR, Kruger GA (2000) Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz—feasibility study. Radiology 216:279–283

    Article  CAS  PubMed  Google Scholar 

  22. Lazebnik M, Popovic D, McCartney L, Watkins CB, Lindstrom MJ, Harter J, Sewall S, Ogilvie T, Magliocco A, Breslin TM (2007) A large-scale study of the ultrawide band microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys Med Biol 52:6093–6115

    Article  PubMed  Google Scholar 

  23. Li B, Zhao X, Dai SC, Cheng W (2014) Associations between mammography and ultrasound imaging features and molecular characteristics of triple-negative breast cancer. Asian Pac J Cancer Prev : APJCP 15:3555–3559

    Article  PubMed  Google Scholar 

  24. McKnight AL, Kugel JL, Rossman PJ, Manduca A, Hartmann LC, Ehman RL (2002) MR elastography of breast cancer: preliminary results. Am J Roentgenol 178:1411–1417

    Article  Google Scholar 

  25. Meaney PM, Fanning MW, Raynolds T, Fox CJ, Fang Q, Kogel CA, Poplack SP, Paulsen KD (2007) Initial clinical experience with microwave breast imaging in women with normal mammography. Acad Radiol 14:207–218. https://doi.org/10.1016/j.acra.2006.10.016

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nie L, Xing D, Zhou Q, Yang D, Guo H (2008) Microwave-induced thermoacoustic scanning CT for high-contrast and noninvasive breast cancer imaging. Med Phys 35:4026–4032. https://doi.org/10.1118/1.2966345

    Article  PubMed  Google Scholar 

  27. Ottini L (2014) Male breast cancer: a rare disease that might uncover underlying pathways of breast cancer. Nat Rev Cancer 14:643–644. https://doi.org/10.1038/nrc3806

    Article  CAS  PubMed  Google Scholar 

  28. Pitchai K (2011) Electromagnetic and heat transfer modeling of microwave heating in domestic ovens. digitalcommons.unl.edu

  29. Pramanik M, Ku G, Li C, Wang LV (2008) Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography. Med Phys 35:2218–2223

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rudlowski C (2008) Male breast cancer. Breast Care 3:183–189. https://doi.org/10.1159/000136825

    Article  PubMed  PubMed Central  Google Scholar 

  31. Saied M, Mansour S, El Sabee M, Saad A, Abdel-Nour K (2012) Some electrical and physical properties of castor oil adducts dissolved in 1-propanol. J Mol Liq 172:1–7

    Article  CAS  Google Scholar 

  32. Sefidgar M, Soltani M, Raahemifar K, Bazmara H, Nayinian SMM, Bazargan M (2014) Effect of tumor shape, size, and tissue transport properties on drug delivery to solid tumors. J Biol Eng 8:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sill J, Fear E (2005) Tissue sensing adaptive radar for breast cancer detection: study of immersion liquids. Electron Lett 41:113–115

    Article  Google Scholar 

  34. Sill JM, Fear EC (2005) Tissue sensing adaptive radar for breast cancer detection—experimental investigation of simple tumor models. IEEE Trans Microwave Theory Tech 53:3312–3319

    Article  Google Scholar 

  35. Soltani M (2012). Numerical modeling of drug delivery to solid tumor microvasculature, PhD thesis. Chem Eng (Nanotechnology), Waterloo, Ontario, Canada. https://uwspace.uwaterloo.ca/handle/10012/7278

  36. Soltani M, Chen P (2011) Numerical modeling of fluid flow in solid tumors. PLoS One 6:e20344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soltani M, Chen P (2012) Effect of tumor shape and size on drug delivery to solid tumors. J Biol Eng 6:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Song J, Zhao Z, Wang J, Zhu X, Wu J, Nie ZP, Liu QH (2013) An integrated simulation approach and experimental research on microwave induced thermo-acoustic tomography system. Prog Electromagn Res 140:385–400

    Article  Google Scholar 

  39. Stylianopoulos T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK (2013) Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse. Cancer Res 73:3833–3841. https://doi.org/10.1158/0008-5472.CAN-12-4521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Houten EE, Doyley MM, Kennedy FE, Weaver JB, Paulsen KD (2003) Initial in vivo experience with steady-state subzone-based MR elastography of the human breast. J Magn Reson Imaging 17:72–85

    Article  PubMed  Google Scholar 

  41. Wang X, Bauer DR, Witte R, Xin H (2012) Microwave-induced thermoacoustic imaging model for potential breast cancer detection. IEEE Trans Biomed Eng 59:2782–2791. https://doi.org/10.1109/TBME.2012.2210218

    Article  PubMed  Google Scholar 

  42. Xie Y, Guo B, Li J, Ku G, Wang LV (2008) Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography. IEEE Trans Biomed Eng 55:2741–2752. https://doi.org/10.1109/TBME.2008.919112

    Article  PubMed  Google Scholar 

  43. Xu M, Wang LV (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans Med Imaging 21:814–822. https://doi.org/10.1109/TMI.2002.801176

    Article  PubMed  Google Scholar 

  44. Xu X, Huang L, Ling Y, Jiang H (2017) Thermoacoustic imaging of finger joints and bones: a feasibility study. In: Proceedings of the 2016 International Conference on Biotechnology & Medical Science. World Scientific, Singapore, pp 243–248

    Google Scholar 

  45. Zastrow E Zastrow E, Davis SK, Lazebnik M, Kelcz F, Van Veen BD, Hagness SC (2007) Database of 3D gridbased numerical breast phantoms for use in computational electromagnetics simulations. Instruction manual. uwcem.ece.wisc.edu

  46. Zhu KG, Popovic M (2009) Spectral difference between microwave radar and microwave-induced thermoacoustic signals. IEEE Antennas Wirel Propag Lett 8:1259–1262

    Article  Google Scholar 

  47. Zhu Q, You S, Jiang Y, Zhang J, Xiao M, Dai Q, Sun Q (2011) Detecting angiogenesis in breast tumors: comparison of color Doppler flow imaging with ultrasound-guided diffuse optical tomography. Ultrasound Med Biol 37:862–869. https://doi.org/10.1016/j.ultrasmedbio.2011.03.010

    Article  PubMed  Google Scholar 

  48. Zurrida S, Nolè F, Bonanni B, Mastropasqua MG, Arnone P, Gentilini O, Latronico A (2010) Male breast cancer. Future Oncol 6:985–991. https://doi.org/10.2217/fon.10.55

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Soltani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, M., Rahpeima, R. & Kashkooli, F.M. Breast cancer diagnosis with a microwave thermoacoustic imaging technique—a numerical approach. Med Biol Eng Comput 57, 1497–1513 (2019). https://doi.org/10.1007/s11517-019-01961-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-019-01961-8

Keywords