Abstract
Atherosclerosis is still the leading cause of death in the developed world. Although its initiation and progression is a complex multifactorial process, it is well known that blood flow-induced wall shear stress (WSS) is an important factor involved in early atherosclerotic plaque initiation. In recent clinical studies, it was established that the regional pathologies of the aortic valve can be involved in the formation of atherosclerotic plaques. However, the impact of hemodynamic effects is not yet fully elucidated for disease initiation and progression. In this study, our developed 3D global fluid–structure interaction model of the aortic root incorporating coronary arteries is used to investigate the possible interaction between coronary arteries and aortic valve pathologies. The coronary hemodynamics was examined and quantified for different degrees of aortic stenosis varying from nonexistent to severe. For the simulated healthy model, the calculated WSS varied between 0.41 and 1.34 Pa which is in the atheroprotective range. However, for moderate and severe aortic stenoses, wide regions of the coronary structures, especially the proximal sections around the first bifurcation, were exposed to lower values of WSS and therefore they were prone to atherosclerosis even in the case of healthy coronary arteries.
Similar content being viewed by others
Abbreviations
- \({\mathbf{F}}\) :
-
Material deformation tensor at the current configuration
- \({\mathbf{f}}_{f}\) :
-
Body force applied on the fluid domain, \({\text{dyne}}\)
- \({\mathbf{f}}_{s}\) :
-
Body force applied on the solid domain, \({\text{dyne}}\)
- \({\mathbf{n}}_{s}\) :
-
Outward pointing normal unit vector to solid domain, dimensionless
- \({\mathbf{n}}_{f}\) :
-
Outward pointing normal unit vector to fluid domain, dimensionless
- \(p_{f}\) :
-
Hydrostatic pressure in the fluid domain, \({\text{Barye}}\)
- \(p_{s}\) :
-
Hydrostatic pressure in the solid domain, \({\text{Barye}}\)
- \({\mathbf{q}}_{f}\) :
-
Appropriate weight function for the continuity equation in fluid domain, arbitrary
- \({\mathbf{q}}_{s}\) :
-
Appropriate weight function for the continuity equation in fluid domain, arbitrary
- \(t\) :
-
Time, s
- \({\mathbf{v}}_{f}\) :
-
Fluid domain velocity vector, cm/s
- \({\mathbf{v}}_{s}\) :
-
Solid domain velocity vector, cm/s
- \(v_{\text{grid}}\) :
-
Velocity of the moving fluid grid, cm/s
- \({\mathbf{w}}_{f}\) :
-
Appropriate weight function for the momentum equation in fluid domain, arbitrary
- \({\mathbf{w}}_{s}\) :
-
Appropriate weight function for the momentum equation in solid domain, arbitrary
- \(\rho_{f}\) :
-
Fluid domain density, g/cm3
- \(\rho_{s}\) :
-
Solid domain density, g/cm3
- \({\varvec{\upsigma}}_{f}\) :
-
Cauchy stress tensor in fluid domain, \({\text{Barye}}\)
- \({\varvec{\upsigma}}_{s}\) :
-
Cauchy stress tensor in solid domain, \({\text{Barye}}\)
- \(\varOmega_{f}\) :
-
Fluid domain, cm3
- \(\varOmega_{s}\) :
-
Solid domain, cm3
- \(\varOmega\) :
-
Entire computational domain, cm3
- \(\partial \varOmega_{s}\) :
-
Fluid–structure interface, cm2
- \(\nabla\) :
-
Gradient operator with respect to the current configuration, cm−1
References
Achilles J, Pappano WGW (2012) Cardiovascular physiology: mosby physiology monograph series, 10th edn. Elsevier, Philadelphia
Ahmadi N, Nabavi V, Hajsadeghi F, Flores F, Azmoon S, Ismaeel H, Shavelle D, Mao SS, Ebrahimi R, Budoff MJ (2011) Impaired aortic distensibility measured by computed tomography is associated with the severity of coronary artery disease. Int J Cardiovasc Imaging 27:459–469. doi:10.1007/s10554-010-9680-6
Algranati D, Kassab GS, Lanir Y (2010) Mechanisms of myocardium-coronary vessel interaction. Am J Physiol Heart Circ Physiol 298:H861–H873. doi:10.1152/ajpheart.00925.2009
Azadani AN, Chitsaz S, Matthews PB, Jaussaud N, Leung J, Wisneski A, Ge L, Tseng EE (2012) Biomechanical comparison of human pulmonary and aortic roots. Eur J Cardiothorac Surg 41:1111–1116. doi:10.1093/ejcts/ezr163
Bache RJ, Wang Y, Greenfield JC Jr (1973) Left ventricular ejection time in valvular aortic stenosis. Circulation 47:527–533
Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550. doi:10.1016/j.cma.2009.04.015
Bertrand F, Tanguy PA, Thibault F (1997) A three-dimensional fictitious domain method for incompressible fluid flow problems. Int J Numer Methods 25:719–736. doi:10.1002/(SICI)1097-0363(19970930)25:6<719:AID-FLD585>3.0.CO;2-K
Brewer RJ, Deck JD, Capati B, Nolan SP (1976) The dynamic aortic root. Its role in aortic valve function. J Thorac Cardiovasc Surg 72:413–417
Carmody CJ, Burriesci G, Howard IC, Patterson EA (2006) An approach to the simulation of fluid-structure interaction in the aortic valve. J Biomech 39:158–169. doi:10.1016/j.jbiomech.2004.10.038
Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH (2011) Aortic stiffness current understanding and future directions. J Am Coll Cardiol 57:1511–1522. doi:10.1016/j.jacc.2010.12.017
Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R, Mannini L (2011) Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214:249–256. doi:10.1016/j.atherosclerosis.2010.09.008
Choudhury N, Bouchot O, Rouleau L, Tremblay D, Cartier R, Butany J, Mongrain R, Leask RL (2009) Local mechanical and structural properties of healthy and diseased human ascending aorta tissue. Am J Cardiovasc Pathol 18:83–91. doi:10.1016/j.carpath.2008.01.001
Clark C (1976) The fluid mechanics of aortic stenosis—II. Unsteady flow experiments. J Biomech 9:567–573
Clark C (1978) Relation between pressure difference across the aortic valve and left ventricular outflow. Cardiovasc Res 12:276–287
Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85:9–23. doi:10.1038/labinvest.3700215
Dasi LP, Simon HA, Sucosky P, Yoganathan AP (2009) Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol 36:225–237. doi:10.1111/j.1440-1681.2008.05099.x
Del Pin F, Çaldichoury I LS-DYNA® 980: Recent Developments, Application Areas and Validation Process of the Incompressible fluid solver (ICFD) in LS-DYNA Part
Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Method Appl M 33:689–723. doi:10.1016/0045-7825(82)90128-1
El-Hamamsy I, Chester AH, Yacoub MH (2010) Cellular regulation of the structure and function of aortic valves. J Adv Res 1:5–12. doi:10.1016/j.jare.2010.02.007
Ferdous Z, Jo H, Nerem RM (2013) Strain magnitude-dependent calcific marker expression in valvular and vascular cells. Cells Tissues Organs 197:372–383. doi:10.1159/000347007
Fung Y (1998) Biomechanics: circulation, 2nd edn. Springer, New York
Fung YCCS (2001) Introduction to bioengineering. World Scientific, Singapore
Gaillard E, Garcia D, Kadem L, Pibarot P, Durand LG (2010) In vitro investigation of the impact of aortic valve stenosis severity on left coronary artery flow. J Biomech Eng 132:044502. doi:10.1115/1.4000990
Garcia D, Camici PG, Durand LG, Rajappan K, Gaillard E, Rimoldi OE, Pibarot P (2009) Impairment of coronary flow reserve in aortic stenosis. J Appl Physiol 106:113–121. doi:10.1152/japplphysiol.00049.2008
Gharib M, Kremers D, Koochesfahani M, Kemp M (2002) Leonardo’s vision of flow visualization. Exp Fluids 33:219–223. doi:10.1007/s00348-002-0478-8
Gijsen F, van der Giessen A, van der Steen A, Wentzel J (2013) Shear stress and advanced atherosclerosis in human coronary arteries. J Biomech 46:240–247. doi:10.1016/j.jbiomech.2012.11.006
Gow BS, Hadfield CD (1979) The elasticity of canine and human coronary arteries with reference to postmortem changes. Circ Res 45:588–594
Hallquist Jo (2006) LS-DYNA THEORY MANUAL Livermore Software Technology Corporation
De Hart J, Baaijens FP, Peters GW, Schreurs PJ (2003) A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36:699–712
De Hart J, Peters GW, Schreurs PJ, Baaijens FP (2003) A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J Biomech 36:103–112
Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA (2010) Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 38:3195–3209. doi:10.1007/s10439-010-0083-6
Kirpalani A, Park H, Butany J, Johnston KW, Ojha M (1999) Velocity and wall shear stress patterns in the human right coronary artery. J Biomech Eng 121:370–375
Krishnamurthy G, Itoh A, Bothe W, Swanson JC, Kuhl E, Karlsson M, Craig Miller D, Ingels NB Jr (2009) Stress-strain behavior of mitral valve leaflets in the beating ovine heart. J Biomech 42:1909–1916. doi:10.1016/j.jbiomech.2009.05.018
Leyh RG, Schmidtke C, Sievers HH, Yacoub MH (1999) Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Circulation 100:2153–2160
Liu Y, Zhang W, Kassab GS (2008) Effects of myocardial constraint on the passive mechanical behaviors of the coronary vessel wall. Am J Physiol Heart Circ Physiol 294:H514–H523. doi:10.1152/ajpheart.00670.2007
van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numer Meth Fluids 46:533–544. doi:10.1002/fld.775
van Loon R, Anderson PD, van de Vosse FN, Sherwin SJ (2007) Comparison of various fluid–structure interaction methods for deformable bodies. J Comput Struct 85:833–843. doi:10.1016/j.compstruc.2007.01.010
Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042
Maleki H, Shahriari S, Durand LG, Labrosse MR, Kadem L (2014) A metric for the stiffness of calcified aortic valves using a combined computational and experimental approach. Med Biol Eng Comput 52:1–8. doi:10.1007/s11517-013-1113-y
Marom G, Haj-Ali R, Raanani E, Schäfers H-J, Rosenfeld M (2012) A fluid–structure interaction model of the aortic valve with coaptation and compliant aortic root. Med Biol Eng Comput 50:173–182. doi:10.1007/s11517-011-0849-5
Metzler SA, Pregonero CA, Butcher JT, Burgess SC, Warnock JN (2008) Cyclic strain regulates pro-inflammatory protein expression in porcine aortic valve endothelial cells. J Heart Valve Dis 17:571–577 (discussion 578)
Mohammadi H, Cartier R, Mongrain R (2015) Derivation of a simplified relation for assessing aortic root pressure drop incorporating wall compliance. Med Biol Eng Comput 53:241–251. doi:10.1007/s11517-014-1228-9
Mohammadi H, Cartier R, Mongrain R (2016) 3D physiological model of the aortic valve incorporating small coronary arteries. Int J Numer Methods Biomed Eng. doi:10.1002/cnm.2829
Mohammadi H, Cartier R, Mongrain R (2016) Review of numerical methods for simulation of the aortic root: present and future directions. Int J Comput Methods Eng Sci Mech 17:182–195. doi:10.1080/15502287.2016.1189463
Mohammadi H, Cartier R, Mongrain R (2013) Development of a 1D model for assessing the aortic root pressure drop with viscosity and compliance. In: ASME 2013 summer bioengineering conference, 2013. American Society of Mechanical Engineers. pp V01AT04A026–V001AT004A026
Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR (2001) Factors influencing blood flow patterns in the human right coronary artery. Ann Biomed Eng 29:109–120
Nemes A, Forster T, Lengyel C, Csanady M (2007) Reduced aortic distensibility and coronary flow velocity reserve in diabetes mellitus patients with a negative coronary angiogram. Can J Cardiol 23:445–450
Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS (2003) A coupled fluid-structure finite element model of the aortic valve and root. J Heart Valve Dis 12:781–789
Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM, Thomas JD (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart diseasea report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. doi:10.1016/j.jacc.2014.02.536
Nixon AM, Gunel M, Sumpio BE (2010) The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg 112:1240–1253. doi:10.3171/2009.10.JNS09759
Nobari S, Mongrain R, Gaillard E, Leask R, Cartier R (2012) Therapeutic vascular compliance change may cause significant variation in coronary perfusion: a numerical study. Computational Math Methods Med 2012:791686. doi:10.1155/2012/791686
Nobari S, Mongrain R, Leask R, Cartier R (2013) The effect of aortic wall and aortic leaflet stiffening on coronary hemodynamic: a fluid-structure interaction study. Med Biol Eng Comput 51:923–936. doi:10.1007/s11517-013-1066-1
Oberoi S, Schoepf UJ, Meyer M, Henzler T, Rowe GW, Costello P, Nance JW (2013) Progression of Arterial Stiffness and Coronary Atherosclerosis: longitudinal Evaluation by Cardiac CT. Am J Roentgenol 200:798–804. doi:10.2214/AJR.12.8653
Papadopoulou S-L, Brugaletta S, Garcia-Garcia HM, Rossi A, Girasis C, Dharampal AS, Neefjes LA, Ligthart J, Nieman K, Krestin GP, Serruys PW, de Feyter PJ (2012) Assessment of atherosclerotic plaques at coronary bifurcations with multidetector computed tomography angiography and intravascular ultrasound-virtual histology. Eur Heart J Cardiovasc Imaging 13:635–642. doi:10.1093/ehjci/jes083
Ranga A, Bouchot O, Mongrain R, Ugolini P, Cartier R (2006) Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact cardiovasc Thorac Surg 5:373–378. doi:10.1510/icvts.2005.121483
Shanmugavelayudam SK, Rubenstein DA, Yin W (2010) Effect of geometrical assumptions on numerical modeling of coronary blood flow under normal and disease conditions. J Biomech Eng 132:061004. doi:10.1115/1.4001033
Shimazu T, Hori M, Mishima M, Kitabatake A, Kodama K, Nanto S, Inoue M (1986) Clinical assessment of elastic properties of large coronary arteries: pressure-diameter relationship and dynamic incremental elastic modulus. Int J Cardiol 13:27–45. doi:10.1016/0167-5273(86)90077-X
Sotiropoulos F, Le TB, Gilmanov A (2016) Fluid mechanics of heart valves and their replacements. Annu Rev Fluid Mech 48:259–283. doi:10.1146/annurev-fluid-122414-034314
Thubrikar M, Piepgrass WC, Bosher LP, Nolan SP (1980) The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ Res 47:792–800
Tremblay D, Zigras T, Cartier R, Leduc L, Butany J, Mongrain R, Leask RL (2009) A comparison of mechanical properties of materials used in aortic arch reconstruction. Ann Thorac Surg 88:1484–1491. doi:10.1016/j.athoracsur.2009.07.023
de Tullio MD, Afferrante L, Demelio G, Pascazio G, Verzicco R (2011) Fluid-structure interaction of deformable aortic prostheses with a bileaflet mechanical valve. J Biomech 44:1684–1690. doi:10.1016/j.jbiomech.2011.03.036
Verhey JF, Bara C (2008) Influence on fluid dynamics of coronary artery outlet angle variation in artificial aortic root prosthesis. Biomed Eng Online 7:9. doi:10.1186/1475-925X-7-9
Weissman NJ, Palacios IF, Weyman AE (1995) Dynamic expansion of the coronary arteries: implications for intravascular ultrasound measurements. Am Heart J 130:46–51
Wood NB, Zhao SZ, Zambanini A, Jackson M, Gedroyc W, Thom SA, Hughes AD, Xu XY (2006) Curvature and tortuosity of the superficial femoral artery: a possible risk factor for peripheral arterial disease. J Appl Physiol 101:1412–1418. doi:10.1152/japplphysiol.00051.2006 (Bethesda, Md: 1985)
Wragg JW, Durant S, McGettrick HM, Sample KM, Egginton S, Bicknell R (2014) Shear stress regulated gene expression and angiogenesis in vascular endothelium. Microcirculation 21:290–300. doi:10.1111/micc.12119
Yoganathan AP, He Z, Casey Jones S (2004) Fluid mechanics of heart valves. Annu Rev Biomed Eng 6:331–362. doi:10.1146/annurev.bioeng.6.040803.140111
Yu Z (2005) A DLM/FD method for fluid/flexible-body interactions. J Comput Phys 207:1–27. doi:10.1016/j.jcp.2004.12.026
Acknowledgements
This research was supported by McGill Engineering Doctoral Award (MEDA), NSERC and Montreal Heart institute (MHI). This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET: www.sharcnet.ca) and Compute/Calcul Canada.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mohammadi, H., Cartier, R. & Mongrain, R. The impact of the aortic valve impairment on the distant coronary arteries hemodynamics: a fluid–structure interaction study. Med Biol Eng Comput 55, 1859–1872 (2017). https://doi.org/10.1007/s11517-017-1636-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-017-1636-8