Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata | Medical & Biological Engineering & Computing Skip to main content
Log in

Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Brain–computer interfacing (BCI) has been the most researched technology in neuroprosthesis in the last two decades. Feature extractors and classifiers play an important role in BCI research for the generation of suitable control signals to drive an assistive device. Due to the high dimensionality of feature vectors in practical BCI systems, implantation of efficient feature selection algorithms has been an integral area of research in the past decade. This article proposes an efficient feature selection technique, realized by means of an evolutionary algorithm, which attempts to overcome some of the shortcomings of several state-of-the-art approaches in this field. The outlined scheme produces a subset of salient features which improves the classification accuracy while maintaining a trade-off with the computational speed of the complete scheme. For this purpose, an efficient memetic algorithm has also been proposed for the optimization purpose. Extensive experimental validations have been conducted on two real-world datasets to establish the efficacy of our approach. We have compared our approach to existing algorithms and have established the superiority of our algorithm to the rest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2:433–459

    Article  Google Scholar 

  2. Alpaydin E (2004) Introduction to machine learning (adaptive computation and machine learning). The MIT Press, Cambridge, MA

    Google Scholar 

  3. Birbaumer N, Murguialday AR, Cohen L (2008) Brain–computer interface in paralysis. Curr Opin Neurol 21(6):634–638

    Article  PubMed  Google Scholar 

  4. Cao LJ, Chua KS, Chong WK, Lee HP, Gu QM (2003) A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55(1–2):321–336

    Google Scholar 

  5. Childers DG (1978) Modern spectrum analysis. IEEE Press, New York

    Google Scholar 

  6. Chou C-H, Su M-C, Lai E (2004) A new cluster validity measure and its application to image compression. Pattern Anal Appl 7(2):205–220

    Article  Google Scholar 

  7. Comon P (1994) Independent component analysis, a new concept? Signal Process 36(3):287–314

    Article  Google Scholar 

  8. Corralejo R, Hornero R, Alvarez D (2011) Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface. In: Proceedings of the 2011 annual international conference of the IEEE engineering in medicine and biology society, EMBC, Boston, MA, pp 7703–7706. doi:10.1109/IEMBS.2011.6091898

  9. Das S, Abraham A, Konar A (2008) Automatic clustering using an improved differential evolution algorithm. IEEE Trans SMC Part A Syst Hum 38(1):218–237

    Article  Google Scholar 

  10. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    Google Scholar 

  11. Dietterich TG (1998) Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput 10(7):1895–1923

    Article  PubMed  Google Scholar 

  12. Dornhege G (2007) Toward brain–computer interfacing. MIT Press, Cambridge, MA

    Google Scholar 

  13. Dornhege G, Blankertz B, Curio G, Muller K (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans Biomed Eng 51(6):993–1002

    Article  PubMed  Google Scholar 

  14. Dyson M, Sepulveda F, Gan JQ (2008) Mental task classification against the idle state: a preliminary investigation. In: Proceedings of the 30th annual international conference of the IEEE engineering in medicine and biology society, Vancouver, BC, pp 4473–4477. doi:10.1109/IEMBS.2008.4650206

  15. Finke A, Knoblauch A, Koesling H, Ritter H (2011) A hybrid brain interface for a humanoid robot assistant. In: Proceedings of the 2011 annual international conference of the IEEE engineering in medicine and biology society, Boston, MA, pp 7421–7424. doi:10.1109/IEMBS.2011.6091728

  16. Galan F, Nuttin M, Lew E, Ferrez PW, Vanacker G, Philips J, del Millan JR (2008) A brain-actuated wheelchair: asynchronous and non-invasive Brain–computer interfaces for continuous control of robots. Clin Neurophysiol 119(9):2159–2169

    Article  CAS  PubMed  Google Scholar 

  17. Hansen PC (1986) The truncated SVD as a method for regularization. Stanford University, Stanford, CA

    Google Scholar 

  18. Hu Z, Chen G, Chen C, Xu H, Zhang J (2010) A new EEG feature selection method for self-paced brain–computer interface. In: Proceedings of the 10th international conference on intelligent systems design and applications, Cairo. doi:10.1109/ISDA.2010.5687156

  19. Kauhanen L, Jylanki P, Lehtonen J, Rantanen P, Alaranta H, Sams M (2007) EEG-based brain–computer interface for tetraplegics. Intell Neurosci 2007:1–11

    Article  Google Scholar 

  20. Lin H, Zhuliang Y, Zhenghui G, Yuanqing Li (2009) Bhattacharyya bound based channel selection for classification of motor imageries in EEG signals. In: Proceedings of the Chinese control and decision conference, Guilin, pp 2353–2356. doi:10.1109/CCDC.2009.5192711

  21. Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4(2):R1–R13

    Article  CAS  PubMed  Google Scholar 

  22. Mason SG, Birch GE (2003) A general framework for brain–computer interface design. IEEE Trans Neural Syst Rehab Eng 11(1):70–85

    Article  Google Scholar 

  23. Michele MT, Robert RL, Rudiger RR, Jose Del RJRM (2010) Towards natural non-invasive hand neuroprostheses for daily living. In: Proceedings of the 2010 annual international conference of the IEEE engineering in medicine and biology society, Beunos Aires, pp 126–129. doi:10.1109/IEMBS.2010.5627178

  24. Mueller-Putz G, Scherer R, Pfurtscheller G, Neuper C (2010) Temporal coding of brain patterns for direct limb control in humans. Front Neurosci 4(34):1–11

    Google Scholar 

  25. Narendra KS, Thathachar M (1974) Learning automata—a survey. IEEE Trans SMC SMC-4(4):323–334

    Google Scholar 

  26. Nijholt A, Tan D (2008) Brain–computer interfacing for intelligent systems. IEEE Intel Syst 23(3):72–79

    Article  Google Scholar 

  27. Pfurtscheller G, Neuper C, Schlogl A, Lugger K (1998) Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans Rehab Eng 6(3):316–325

    Article  CAS  Google Scholar 

  28. Pfurtscheller G, Neuper C, Muller GR, Obermaier B, Krausz G, Schlogl A, Scherer R, Graimann B, Keinrath C, Skliris D, Wortz M, Supp G, Schrank C (2003) Graz-BCI: state of the art and clinical applications. IEEE Trans Neural Syst Rehab Eng 11(2):1–4

    Article  Google Scholar 

  29. Prasad G, Herman P, Coyle D, McDonough S, Crosbie J (2010) Applying a brain–computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil 7(1):1–17

    Article  Google Scholar 

  30. Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization (Natural Computing Series). Springer-Verlag New York, Inc

  31. Rakotomamonjy A, Guigue V, Mallet G, Alvarado V (2005) Ensemble of SVMs for improving brain computer interface p300 speller performances. In: Duch W, Kacprzyk J, Oja E, Zadrozny S (eds) 15th international conference on Artificial Neural Networks: Biological Inspirations (ICANN), LNCS 3696, Springer, Berlin Heidelberg, pp 45–50. doi:10.1007/11550822_8

  32. Sanei S, Chambers JA (2008) EEG signal processing. Wiley, West Sussex, England

    Google Scholar 

  33. Scholkopf B, Smola A, Muller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  34. Sengupta A, Chakraborti T, Konar A, Eunjin K, Nagar AK (2012) An adaptive memetic algorithm using a synergy of differential evolution and learning automata. In: Proceedings of the 2012 IEEE congress on evolutionary computation (CEC), Brisbane, QLD, pp 1–8. doi:10.1109/CEC.2012.6256574

  35. Shawe-Taylor J, Sun S (2011) A review of optimization methodologies in support vector machines. Neurocomputing 74(17):3609–3618

    Article  Google Scholar 

  36. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  Google Scholar 

  37. Sun S (2008) The extreme energy ratio criterion for EEG feature extraction. In: Kurkova V, Neruda R, Koutnik J (eds) international conference on artificial neural networks (ICANN), LNCS 5164, Springer, Berlin Heidelberg, pp 919–928. doi:10.1007/978-3-540-87559-8_95

  38. Sun S (2010) Extreme energy difference for feature extraction of EEG signals. Expert Syst Appl 37(6):4350–4357

    Article  Google Scholar 

  39. Sun S, Zhang C (2006) Adaptive feature extraction for eeg signal classification. J Med Bio Eng Com 44(10):931–935

    Article  Google Scholar 

  40. Tamraz JC, Comair YG (2006) Central region and motor cortex. In: Atlas of regional anatomy of the brain using MRI. Springer, Berlin, pp 117–138

  41. Theodoridis S, Koutroumbas K (2006) Pattern recognition. Elsevier Science, Amsterdam

    Google Scholar 

  42. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  43. Yew-Soon O, Meng-Hiot L, Xianshun C (2010) Memetic computation-past, present & future. IEEE Comput Intell Mag 5(2):24–31

    Article  Google Scholar 

  44. Yongwook C, Jaeseung J, Sungho J (2012) Toward brain-actuated humanoid robots: asynchronous direct control using an EEG-based BCI. IEEE Trans Robot 28(5):1131–1144

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank University Grants Commission, India; University of Potential Excellence Programme (Phase II) in Cognitive Science; Jadavpur University; and Council of Scientific and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saugat Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, S., Sengupta, A., Chakraborti, T. et al. Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata. Med Biol Eng Comput 52, 131–139 (2014). https://doi.org/10.1007/s11517-013-1123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-013-1123-9

Keywords

Navigation