A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta | Medical & Biological Engineering & Computing Skip to main content
Log in

A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Endovascular aortic stent-graft is a new, minimally invasive procedure for treating thoracic aortic diseases, and has quickly evolved to be one of the standard treatments subject to anatomic constraints. This procedure involves the placement of a self-expanding stent-graft system in a high-flow thoracic aorta. Stent-graft deployment in the thoracic aorta, especially close to the aortic arch, normally experiences a significant drag force which might lead to the risk of stent-graft failure. A comprehensive investigation on the biomechanical factors affecting the drag force on a stent-graft in the thoracic aorta is thus in order, and the goal is to perform an in-depth study on the contributing biomechanical factors. Three factors affecting the deployed stent-graft are considered, namely, the internal diameter of the vessel, the starting position of the graft and the diameter of curvature of the aortic arch. Computational fluid dynamic techniques are applied to model the blood flow. The inlet velocity and outlet pressure are assumed to be pulsatile. The three-dimensional continuity equation and the time-dependent Navier–Stokes equations for an incompressible fluid were solved numerically. The drag force due to the change of momentum within the stent-graft and the shear stress were calculated and analyzed. The drag force on a stent-graft will depend critically on the internal diameter and the starting position of stent-graft deployment. Larger internal diameter leads to larger drag force and the stent-graft deployed at the more distal position may be associated with significantly diminished drag force. Smaller diameter of curvature of the aortic arch probably results in a decline of the drag force on the stent-graft, even though this factor merely causes only a modest difference. These findings may have important implications for the choice and design of stent-grafts in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bergeron P, De Chaumaray T, Gay J, Douillez V (2003) Endovascular treatment of thoracic aortic aneurysms. J Cardiovasc Surg (Torino) 44:349–361

    Google Scholar 

  2. Dake MD, Miller DC, Mitchell RS, Semba CP et al (1998) The “first generation” of endovascular stent-grafts for patients with aneurysms of the descending thoracic aorta. J Thorac Cardiovasc Surg 116:689–703. doi:10.1016/S0022-5223(98)00455-3

    Article  Google Scholar 

  3. Diethrich EB (2005) Thoracic aortic endografting. J Cardiovasc Surg (Torino) 46:99–100

    Google Scholar 

  4. Diethrich EB (2006) Gore TAG (R) thoracic endoprosthesis: the first US FDA-approved thoracic endograft. Expert Rev Med Devices 3:557–564. doi:10.1586/17434440.3.5.557

    Article  Google Scholar 

  5. Ellozy SH, Carroccio A, Minor M, Jacobs T et al (2003) Challenges of endovascular tube graft repair of thoracic aortic aneurysm: midterm follow-up and lessons learned. J Vasc Surg 38:676–683. doi:10.1016/S0741-5214(03)00934-0

    Article  Google Scholar 

  6. Greenberg R, Resch T, Nyman U, Lindh M et al (2000) Endovascular repair of descending thoracic aortic aneurysms: an early experience with intermediate-term follow-up. J Vasc Surg 31:147–156. doi:10.1016/S0741-5214(00)70076-0

    Article  Google Scholar 

  7. Mitchell RS, Dake MD, Semba CP, Fogarty TJ et al (1996) Endovascular stent-graft repair of thoracic aortic aneurysms. J Thorac Cardiovasc Surg 111:1054–1060. doi:10.1016/S0022-5223(96)70382-3

    Article  Google Scholar 

  8. Chuter TAM (2002) Stent-graft design: the good, the bad and the ugly. Cardiovasc Surg 10:7–13. doi:10.1016/S0967-2109(01)00120-X

    Article  Google Scholar 

  9. Conners MS, Sternbergh WC, Carter G, Tonnessen BH et al (2002) Endograft migration one to four years after endovascular abdominal aortic aneurysm repair with the AneuRx device: a cautionary note. J Vasc Surg 36:476–482. doi:10.1067/mva.2002.126561

    Article  Google Scholar 

  10. Mitchell RS, Miller DC, Dake MD, Semba CP et al (1999) Thoracic aortic aneurysm repair with an endovascular stent graft: the “first generation.” Ann Thorac Surg 67:1971–1974. doi:10.1016/S0003-4975(99)00436-1

    Article  Google Scholar 

  11. Steinbauer MGM, Stehr A, Pfister K, Herold T et al (2006) Endovascular repair of proximal endograft collapse after treatment for thoracic aortic disease. J Vasc Surg 43:609–612. doi:10.1016/j.jvs.2005.11.045

    Article  Google Scholar 

  12. Sternbergh WC, Money SR, Greenberg RK, Chuter TAM (2004) Influence of endograft oversizing on device migration, endoleak, aneurysm shrinkage, and aortic neck dilation: results from the Zenith multicenter trial. J Vasc Surg 39:20–26. doi:10.1016/j.jvs.2003.09.022

    Article  Google Scholar 

  13. Sunder-Plassmann L, Orend KH (2005) Stentgrafting of the thoracic aorta-complications. J Cardiovasc Surg (Torino) 46:121–130

    Google Scholar 

  14. Thien VH (2005) Toward an understanding of endoleaks and displacement forces. J Endovasc Ther 12:121. doi:10.1583/04-1315C.1

    Google Scholar 

  15. Won JY, Suh SH, Ko H, Lee KH et al (2006) Problems encountered during and after stent-graft treatment of aortic dissection. J Vasc Interv Radiol 17:271–281

    Article  Google Scholar 

  16. Zarins CK, Bloch DA, Crabtree T, Matsumoto AH et al (2003) Stent graft migration after endovascular aneurysm repair: importance of proximal fixation. J Vasc Surg 38:1264–1272. doi:10.1016/S0741-5214(03)00946-7

    Article  Google Scholar 

  17. Chandran KB (1993) Flow dynamics in the human aorta. J Biomech Eng Trans Asme 115:611–616. doi:10.1115/1.2895548

    Article  Google Scholar 

  18. Pedley TJ (2003) Mathematical modelling of arterial fluid dynamics. J Eng Math 47:419–444. doi:10.1023/B:ENGI.0000007978.33352.59

    Article  MATH  MathSciNet  Google Scholar 

  19. Shahcheraghi N, Dwyer HA, Cheer AY, Barakat AI et al (2002) Unsteady and three-dimensional simulation of blood flow in the human aortic arch. J Biomech Eng Trans Asme 124:378–387. doi:10.1115/1.1487357

    Article  Google Scholar 

  20. Yearwood TL, Chandran KB (1982) Physiological pulsatile flow experiments in a model of the human aortic-arch. J Biomech 15:683–704. doi:10.1016/0021-9290(82)90023-9

    Article  Google Scholar 

  21. Lasheras JC (2007) The biomechanics of arterial aneurysms. Annu Rev Fluid Mech 39:293–319. doi:10.1146/annurev.fluid.39.050905.110128

    Article  MathSciNet  Google Scholar 

  22. Morris L, Delassus P, Callanan A, Walsh M et al (2005) 3-D numerical simulation of blood flow through models of the human aorta. J Biomech Eng Trans Asme 127:767–775. doi:10.1115/1.1992521

    Article  Google Scholar 

  23. Chong CK, How TV (2004) Flow patterns in an endovascular stent-graft for abdominal aortic aneurysm repair. J Biomech 37:89–97. doi:10.1016/S0021-9290(03)00236-7

    Article  Google Scholar 

  24. Jacobson EE, Fletcher DF, Morgan MK, Johnston IH (1999) Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis. Med Biol Eng Comput 37:59–63. doi:10.1007/BF02513267

    Article  Google Scholar 

  25. Perktold K, Thurner E, Kenner T (1994) Flow and stress characteristics in rigid walled and compliant carotid-artery bifurcation models. Med Biol Eng Comput 32:19–26. doi:10.1007/BF02512474

    Article  Google Scholar 

  26. Frauenfelder T, Lotfey M, Boehm T, Wildermuth S (2006) Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc Intervent Radiol 29:613–623. doi:10.1007/s00270-005-0227-5

    Article  Google Scholar 

  27. Del Gaudio C, Morbiducci U, Grigioni M (2006) Time dependent non-Newtonian numerical study of the flow field in a realistic model of aortic arch. Int J Artif Organs 29:709–718

    Google Scholar 

  28. Corney S, Johnston PR, Kilpatrick D (2004) Construction of realistic branched, three-dimensional arteries suitable for computational modelling of flow. Med Biol Eng Comput 42:660–668. doi:10.1007/BF02347548

    Article  Google Scholar 

  29. Payne SJ (2004) Analysis of the effects of gravity and wall thickness in a model of blood flow through axisymmetric vessels. Med Biol Eng Comput 42:799–806. doi:10.1007/BF02345213

    Article  Google Scholar 

  30. Mori D, Hayasaka T, Yamaguchi T (2002) Modeling of the human aortic arch with its major branches for computational fluid dynamics simulation of the blood flow. JSME Int J Ser C Mech Syst Mach Elem Manuf 45:997–1002. doi:10.1299/jsmec.45.997

    Google Scholar 

  31. Liffman K, Lawrence-Brown MMD, Semmens JB, Bui A et al (2001) Analytical modeling and numerical simulation of forces in an endoluminal graft. J Endovasc Ther 8:358–371. doi:10.1583/1545-1550(2001)008<0358:AMANSO>2.0.CO;2

    Article  Google Scholar 

  32. Mohan IV, Harris PL, van Marrewijk CJ, Laheij RJ et al (2002) Factors and forces influencing stent-graft migration after endovascular aortic aneurysm repair. J Endovasc Ther 9:748–755. doi:10.1583/1545-1550(2002)009<0748:FAFISG>2.0.CO;2

    Article  Google Scholar 

  33. Franzini JB (1997) Fluid mechanics with engineering applications, McGraw-Hill

  34. Cacho F, Doblare M, Holzapfel GA (2007) A procedure to simulate coronary artery bypass graft surgery. Med Biol Eng Comput 45:819–827. doi:10.1007/s11517-007-0201-2

    Article  Google Scholar 

  35. Di Martino ES, Guadagni G, Fumero A, Ballerini G et al (2001) Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 23:647–655. doi:10.1016/S1350-4533(01)00093-5

    Article  Google Scholar 

  36. Frank AO, Walsh PW, Moore JE (2002) Computational fluid dynamics and stent design. Artif Organs 26:614–621. doi:10.1046/j.1525-1594.2002.07084.x

    Article  Google Scholar 

  37. Leung JH, Wright AR, Cheshire N, Crane J et al (2006) Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed Eng Online 5

  38. Zhang J, Chua L, Ghista D, Yu S et al (2008) Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model. Med Biol Eng Comput (in press)

  39. Resch T, Malina M, Lindblad B, Malina J et al (2000) The impact of stent design on proximal stent-graft fixation in the abdominal aorta: an experimental study. Eur J Vasc Endovasc Surg 20:190–195. doi:10.1053/ejvs.1999.0991

    Article  Google Scholar 

  40. Volodos SM, Sayers RD, Gostelow JP, Bell P (2003) Factors affecting the displacement force exerted on a stent graft after AAA repair—an in vitro study. Eur J Vasc Endovasc Surg 26:596–601. doi:10.1016/j.ejvs.2003.08.002

    Article  Google Scholar 

  41. Nienaber CA, Kische S, Ince H (2007) Thoracic aortic stent-graft devices: problems, failure modes, and applicability. Semin Vasc Surg 20:81–89. doi:10.1053/j.semvascsurg.2007.04.005

    Article  Google Scholar 

  42. Malina M, Sonesson B, Ivancev K (2005) Endografting of thoracic aortic aneurysms and dissections. J Cardiovasc Surg (Torino) 46:333–348

    Google Scholar 

  43. Mohan IV, Laheij RJF, Harris PL (2001) Risk factors for endoleak and the evidence for stent-graft oversizing in patients undergoing endovascular aneurysm repair. Eur J Vasc Endovasc Surg 21:344–349. doi:10.1053/ejvs.2000.1341

    Article  Google Scholar 

  44. Mitchell RS, Ishimaru S, Criado FJ, Ehrlich MP et al (2005) Third international summit on thoracic aortic endografting: lessons from long-term results of thoracic stent-graft repairs. J Endovasc Ther 12:89–97. doi:10.1583/04-1408R.1

    Article  Google Scholar 

  45. Fung YC (1997) Biomechanics: circulation, Springer

  46. Pedley TJ (1980) The fluid mechanics of large blood vessels, Cambridge University Press

  47. Nichols WW (1998) McDonald’s blood flow in arteries: theoretical, experimental, and clinical principles, Arnold; Oxford University Press

  48. Olufsen MS, Peskin CS, Kim WY, Pedersen EM et al (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299. doi:10.1114/1.1326031

    Article  Google Scholar 

  49. Nerem RM, Ja Rumberge, Gross DR, Hamlin RL et al (1974) Hot-film anemometer velocity-measurements of arterial blood-flow in horses. Circ Res 34:193–203

    Google Scholar 

  50. Seed WA, Wood NB (1971) Velocity patterns in aorta. Cardiovasc Res 5:319–330. doi:10.1093/cvr/5.3.319

    Article  Google Scholar 

  51. Nerem RM, Wood NB, Seed WA (1972) Experimental study of velocity distribution and transition to turbulence in aorta. J Fluid Mech 52:137–160. doi:10.1017/S0022112072003003

    Article  Google Scholar 

  52. Morris L, Delassus P, Walsh M, McGloughlin T (2004) A mathematical model to predict the in vivo pulsatile drag forces acting on bifurcated stent grafts used in endovascular treatment of abdominal aortic aneurysms (AAA). J Biomech 37:1087–1095. doi:10.1016/j.jbiomech.2003.11.014

    Article  Google Scholar 

  53. Kim T, Cheer AY, Dwyer HA (2004) A simulated dye method for flow visualization with a computational model for blood flow. J Biomech 37:1125–1136. doi:10.1016/j.jbiomech.2003.12.028

    Article  Google Scholar 

  54. Palmaz F, Sprague E, Palmaz JC (1996) Physical properties of polytetrafluoroethylene bypass material after balloon dilation. J Vasc Interv Radiol 7:657–663

    Article  Google Scholar 

  55. Sarkar S, Schmitz-Rixen T, Hamilton G, Seifalian AM (2007) Achieving the ideal properties for vascular bypass grafts using a tissue engineered approach: a review. Med Biol Eng Comput 45:327–336. doi:10.1007/s11517-007-0176-z

    Article  Google Scholar 

  56. Black MM, Hose DR, Lawford PV (1995) The origin and significance of secondary flows in the aortic arch. J Med Eng Technol 19:192–197. doi:10.3109/03091909509030288

    Article  Google Scholar 

  57. Farthing S, Peronneau P (1979) Flow in the thoracic aorta. Cardiovasc Res 13:607–620. doi:10.1093/cvr/13.11.607

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank our two reviewers for reviewing our manuscript and giving very constructive suggestions which have improved the quality of this manuscript considerably. Thank you so much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Lam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC (252 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, S.K., Fung, G.S.K., Cheng, S.W.K. et al. A computational study on the biomechanical factors related to stent-graft models in the thoracic aorta. Med Biol Eng Comput 46, 1129–1138 (2008). https://doi.org/10.1007/s11517-008-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0361-8

Keywords

Navigation