A numerical model to predict abdominal aortic aneurysm expansion based on local wall stress and stiffness | Medical & Biological Engineering & Computing Skip to main content
Log in

A numerical model to predict abdominal aortic aneurysm expansion based on local wall stress and stiffness

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Aneurysms of the abdominal aorta enlarge until rupture occurs. We assume that this is the result of remodelling to restore wall stress. We developed a numerical model to predict aneurysm expansion based on this assumption. In addition, we obtained aneurysm geometry of 11 patients from computed tomography angiographic images to obtain patient specific calculations. The assumption of a wall stress related expansion indeed resulted in a series of local expansions, adjusting global geometry in an exponential fashion similar as in patients. Furthermore, it revealed that location of peak wall stress changed over time. The assumptions of this model are discussed in detail in this manuscript, and the implications are related to literature findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAA:

Abdominal aortic aneurysm

CTA:

Computer tomography angiography

3D:

Three dimensional

FEM:

Finite element methods

MMPs:

Matrix metalloproteinases

References

  1. Brady AR, Thompson SG, Fowkes FG, Greenhalgh RM, Powell JT (2004) Abdominal aortic aneurysm expansion: risk factors and time intervals for surveillance. Circulation 110:16–21. doi:10.1161/01.CIR.0000133279.07468.9F

    Article  Google Scholar 

  2. de Putter S, Wolters BJ, Rutten MC, Breeuwer M, Gerritsen FA, van de Vosse FN (2007) Patient-specific initial wall stress in abdominal aortic aneurysms with a backward incremental method. J Biomech 40:1081–1090. doi:10.1016/j.jbiomech.2006.04.019

    Article  Google Scholar 

  3. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37:724–732. doi:10.1067/mva.2003.213

    Article  Google Scholar 

  4. Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE (2002) In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 36:589–597. doi:10.1067/mva.2002.125478

    Article  Google Scholar 

  5. Fleming C, Whitlock EP, Beil TL, Lederle FA (2005) Screening for abdominal aortic aneurysm: a best-evidence systematic review for the U.S. Preventive Services Task Force. Ann Intern Med 142:203–211

    Google Scholar 

  6. Fridez P, Rachev A, Meister JJ, Hayashi K, Stergiopulos N (2001) Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. Am J Physiol Heart Circ Physiol 280:H2752–H2760

    Google Scholar 

  7. Gijsen FJ, Palmen DE, van der Beek MH, van de Vosse FN, van Dongen ME, Janssen JD (1996) Analysis of the axial flow field in stenosed carotid artery bifurcation models–LDA experiments. J Biomech 29:1483–1489. doi:10.1016/0021-9290(96)84544-1

    Article  Google Scholar 

  8. Gijsen FJ, van de Vosse FN, Janssen JD (1998) Wall shear stress in backward-facing step flow of a red blood cell suspension. Biorheology 35:263–279. doi:10.1016/S0006-355X(99)80010-9

    Article  Google Scholar 

  9. Greenwald SE, Moore JE Jr, Rachev A, Kane TP, Meister JJ (1997) Experimental investigation of the distribution of residual strains in the artery wall. J Biomech Eng 119:438–444. doi:10.1115/1.2798291

    Article  Google Scholar 

  10. Groenink M, Langerak SE, Vanbavel E, van der Wall EE, Mulder BJ, van der Wal AC et al (1999) The influence of aging and aortic stiffness on permanent dilation and breaking stress of the thoracic descending aorta. Cardiovasc Res 43:471–480. doi:10.1016/S0008-6363(99)00095-4

    Article  Google Scholar 

  11. Hatakeyama T, Shigematsu H, Muto T (2001) Risk factors for rupture of abdominal aortic aneurysm based on three-dimensional study. J Vasc Surg 33:453–461. doi:10.1067/mva.2001.111731

    Article  Google Scholar 

  12. Hirose Y, Hamada S, Takamiya M (1995) Predicting the growth of aortic aneurysms: a comparison of linear vs exponential models. Angiology 46:413–419

    Article  Google Scholar 

  13. Li C, Xu Q (2000) Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal 12:435–445. doi:10.1016/S0898-6568(00)00096-6

    Article  Google Scholar 

  14. Matheson LA, Maksym GN, Santerre JP, Labow RS (2006) Cyclic biaxial strain affects U937 macrophage-like morphology and enzymatic activities. J Biomed Mater Res A 76:52–62. doi:10.1002/jbm.a.30448

    Google Scholar 

  15. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85:1–31. doi:10.1152/physrev.00048.2003

    Article  Google Scholar 

  16. Schouten O, van Laanen JH, Boersma E, Vidakovic R, Feringa HH, Dunkelgrun M, Bax JJ, Koning J, van UH, Poldermans D (2006) Statins are associated with a reduced infrarenal abdominal aortic aneurysm growth. Eur J Vasc Endovasc Surg 32:21–26. doi:10.1016/j.ejvs.2005.12.024

    Article  Google Scholar 

  17. Stergiopulos N, Vulliemoz S, Rachev A, Meister JJ, Greenwald SE (2001) Assessing the homogeneity of the elastic properties and composition of the pig aortic media. J Vasc Res 38:237–246. doi:10.1159/000051052

    Article  Google Scholar 

  18. Takemura M, Itoh H, Sagawa N, Yura S, Korita D, Kakui K et al (2004) Cyclic mechanical stretch augments both interleukin-8 and monocyte chemotactic protein-3 production in the cultured human uterine cervical fibroblast cells. Mol Hum Reprod 10:573–580. doi:10.1093/molehr/gah077

    Article  Google Scholar 

  19. Thompson RW, Geraghty PJ, Lee JK (2002) Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr Probl Surg 39:110–230. doi:10.1067/msg.2002.121421

    Article  Google Scholar 

  20. Thubrikar MJ, Labrosse M, Robicsek F, Al-Soudi J, Fowler B (2001) Mechanical properties of abdominal aortic aneurysm wall. J Med Eng Technol 25:133–142. doi:10.1080/03091900110057806

    Article  Google Scholar 

  21. van de Vosse FN, Van Steenhoven AA, Janssen JD, Reneman RS (1990) A two-dimensional numerical analysis of unsteady flow in the carotid artery bifurcation. A comparison with three-dimensional in-vitro measurements and the influence of minor stenoses. Biorheology 27:163–189

    Google Scholar 

  22. Vardulaki KA, Prevost TC, Walker NM, Day NE, Wilmink AB, Quick CR et al (1998) Growth rates and risk of rupture of abdominal aortic aneurysms. Br J Surg 85:1674–1680. doi:10.1046/j.1365-2168.1998.00946.x

    Article  Google Scholar 

  23. Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G et al (2004) A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 28:168–176

    Google Scholar 

  24. Vorp DA, Vande Geest JP (2005) Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler Thromb Vasc Biol 25:1558–1566. doi:10.1161/01.ATV.0000174129.77391.55

    Article  Google Scholar 

Download references

Acknowledgments

This research was performed in the scope of the Hemodyn project, a cooperation between Philips Healthcare Best (Healthcare Informatics), Technische Universiteit Eindhoven (Biomedical Engineering department) and Erasmus MC (Thoraxcenter, Biomedical Engineering), Rotterdam, The Netherlands, The Hemodyn project was partly funded by SenterNovem (Dutch Ministry of Economic Affairs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Helderman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helderman, F., Manoch, I.J., Breeuwer, M. et al. A numerical model to predict abdominal aortic aneurysm expansion based on local wall stress and stiffness. Med Biol Eng Comput 46, 1121–1127 (2008). https://doi.org/10.1007/s11517-008-0358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0358-3

Keywords

Navigation