Use of a Rayleigh damping model in elastography | Medical & Biological Engineering & Computing Skip to main content
Log in

Use of a Rayleigh damping model in elastography

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A Rayleigh damping model applied to magnetic resonance elastography incorporates attenuation behavior proportionally related to both elastic and inertial forces, and allows two damping parameters to be extracted from an MRI motion dataset. Under time-harmonic conditions, the model can be implemented by the use of complex shear modulus and density, whereas viscoelastic damping models commonly used in elastography consist of only a complex shear modulus, and model only a single damping effect. Simulation studies reveal that the differences between damped elastic behavior resulting from a purely complex shear modulus (CSM damping) and from a purely complex density (CD damping) become larger as the overall level of damping present (indicated by the damping ratio) increases. A plot of results generated from the finite element (FE) model indicate the relative motion differences estimated for a range of damping ratios and CSM/CD damping combinations increase with damping ratio, and can be up to 15% at a damping ratio of 50% and therefore using the correct model for a Rayleigh damped material becomes increasingly important as damping levels increase. Resonance-related effects cause values from this plot to vary by as much as 3% as parameters such as wave speed, frequency, and problem size are altered. These motion differences can be compared to expected noise levels to estimate the parameter resolution achievable by a reconstruction algorithm. An optimization-based global property reconstruction algorithm was developed, and used for testing Rayleigh damping parameter reconstructions with gaussian noise added to the simulated motion input data. The coherent motion errors resulting from altering the combination of the two damping parameters are large enough to allow accurate determination of both of the Rayleigh damping parameters with incoherent noise levels comparable to MR measurements. The accuracy achieved by the global reconstructions was significantly better than would be predicted by examining the motion differences for differing CSM/CD damping combinations, which is likely to be due to the low ratio between number of reconstructed parameters and number of noisy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bland DR (1960) The theory of linear viscoelasticity. Pergamon Press, Oxford

    MATH  Google Scholar 

  2. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

    Google Scholar 

  3. Flugge W (1975) Viscoelasticity, second revised edition. Springer, Berlin

    Google Scholar 

  4. Manduca A, Oliphant TE, Dresner MA, Kruse JL, Amromin E, Felmlee JP, Greenleaf JF, Ehman RL (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5:237–254

    Article  Google Scholar 

  5. McGarry MDJ, Berger HU, Van Houten EEW (2007) Damping models in elastography. In: Proceedings-medical imaging-SPIE, vol 6511, Feb. 17–22, 2007, San Diego, CA, USA

  6. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854–1857

    Article  Google Scholar 

  7. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  8. Oliphant TE, Manduca A, Ehman RL, Greenleaf JF (2001) Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation. Magn Reson Med 45:299–310

    Article  Google Scholar 

  9. Ortega JM, Rheinboldt WC (2000) Iterative Solution of Nonlinear Equations in Several Variables. Society for Industrial and Applied Mathematics, Philadelphia

    MATH  Google Scholar 

  10. Semblat JF (1997) Rheological interpretation of rayleigh damping. J Sound Vib 206:741–744

    Article  Google Scholar 

  11. Sinkus R, Tanter M, Catheline S, Lorenzen J, Kuhl C, Sondermann E, Fink M (2005) Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography. Magn Reson Med 53:372–387

    Article  Google Scholar 

  12. Sinkus R, Tanter M, Xydeas T, Catheline S, Bercoff J, Fink M (2005) Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging 23:159–165

    Article  Google Scholar 

  13. Van Houten EEW, Doyley MM, Kennedy FE, Weaver JB, Paulsen KD (2003) Initial in-vivo experience with steady-state subzone-based MR elastography of the human breast. J Magn Reson Imaging 17:72–85

    Article  Google Scholar 

  14. Van Houten EEW, Doyley MM, Kennedy FE, Paulsen KD, Weaver JB (2005) A three-parameter mechanical property reconstruction method for MR-based elastic property imaging. IEEE Trans Med Imaging 24:311–324

    Article  Google Scholar 

  15. Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1, the basis. Butterworth-Heinemann, Newton

Download references

Acknowledgments

We gratefully acknowledge support from NIH/NIBIB R01-EB004632-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. J. McGarry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGarry, M.D.J., Van Houten, E.E.W. Use of a Rayleigh damping model in elastography. Med Biol Eng Comput 46, 759–766 (2008). https://doi.org/10.1007/s11517-008-0356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0356-5

Keywords

Navigation