A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation | Medical & Biological Engineering & Computing Skip to main content
Log in

A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia with episodes that may terminate spontaneously in the first stages of the disease. On the other hand, when the arrhythmia is not self-terminating, normal sinus rhythm (NSR) restoration use to be required to reduce the risk of stroke and improve cardiac output. Electrical cardioversion (ECV) is the most effective alternative to revert AF back to sinus rhythm. However, because of its collateral effects and the high risk of AF recurrence, it is clinically important to predict NSR maintenance after ECV before it is attempted. This work presents a non-invasive method able to predict the ECV outcome of persistent AF. In this respect, the atrial activity (AA) organization degree has been computed, both in time and wavelet domains, using a non-linear regularity index, such as sample entropy (SampEn). The main hypothesis considers that AF recurrence can be greater in those patients who present a more disorganized AA. Considering only the time-domain organization analysis, 90% (19 out of 21) sensitivity and 79% (11 out of 14) specificity was obtained, whereas, with only the wavelet-domain organization analysis, 81% (17 out of 21) sensitivity and 86% (12 out of 14) specificity was reported. By combining suitably both organization strategies, 95% (20 out of 21) sensitivity and 93% (13 out of 14) specificity was obtained and the ECV outcome in 33 out of 35 patients (94%) was correctly predicted. These results show that the proposed AA organization schemes and their suitable combination are promising candidates for predicting successful cardioversion and NSR maintenance following ECV in persistent AF patients. Nevertheless, further studies employing larger ECV databases are required to provide confidence and reliability to these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Addison PS (2005) Wavelet transforms and the ECG: a review. Physiol Meas 26(5):R155–R199

    Article  Google Scholar 

  2. Alcaraz R, Rieta JJ (2008) Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation. Physiol Meas 29(1):65–80

    Article  Google Scholar 

  3. Benjamin EJ, Wolf PA, D’Agostino RB, Silbershatz H, Kannel WB, Levy D (1998) Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98(10):946–952

    Google Scholar 

  4. Berg MPVD, Noord TV, Brouwer J, Haaksma J, Veldhuisen DJV, Crijns HJGM, Gelder ICV (2004) Clustering of RR intervals predicts effective electrical cardioversion for atrial fibrillation. J Cardiovasc Electrophysiol 15(9):1027–1033

    Article  Google Scholar 

  5. Bollmann A, Husser D, Steinert R, Stridh M, Soernmo L, Olsson SB, Polywka D, Molling J, Geller C, Klein HU (2003) Echocardiographic and electrocardiographic predictors for atrial fibrillation recurrence following cardioversion. J Cardiovasc Electrophysiol 14(10 Suppl):S162–S165

    Article  Google Scholar 

  6. Bollmann A, Sonne A, Esperer H, Toepffer I, Langberg J, Klein H (1999) Non-invasive assessment of fibrillatory activity in patients with paroxysmal and persistent atrial fibrillation using the holter ECG. Cardiovasc Res 44:60–66

    Article  Google Scholar 

  7. Calcagnini G, Censi F, Michelucci A, Bartolini P (2006) Descriptors of wavefront propagation. Endocardial mapping of atrial fibrillation with basket catheter. IEEE Eng Med Biol Mag 25(6):71–78

    Article  Google Scholar 

  8. Courdec JP, Zareba W, Burattini L et al (1997) Detection of abnormal time–frequency components of the QT interval using wavelet transformation technique. Comput Cardiol 24:661–664

    Google Scholar 

  9. Dotsinsky I, Stoyanov T (2004) Optimization of bi-directional digital filtering for drift suppression in electrocardiogram signals. J Med Eng Technol 28(4):178–180

    Article  Google Scholar 

  10. Duytschaever M, Haerynck F, Tavernier R, Jordaens L (1998) Factors influencing long term persistence of sinus rhythm after a first electrical cardioversion for atrial fibrillation. Pacing Clin Electrophysiol 21(1 Pt 2):284–287

    Article  Google Scholar 

  11. Ewy GA, Ulfers L, Hager WD, Rosenfeld AR, Roeske WR, Goldman S (1980) Response of atrial fibrillation to therapy: role of etiology and left atrial diameter. J Electrocardiol 13(2):119–123

    Article  Google Scholar 

  12. Ferdjallah M, Barr RE (1994) Adaptive digital notch filter design on the unit circle for the removal of powerline noise from biomedical signals. IEEE Trans Biomed Eng 41(6):529–536

    Article  Google Scholar 

  13. Furberg CD, Psaty BM, Manolio TA, Gardin JM, Smith VE, Rautaharju PM (1994) Prevalence of atrial fibrillation in elderly subjects (the Cardiovascular Health Study). Am J Cardiol 74(3):236–241

    Article  Google Scholar 

  14. Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA et al (2006) ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association task force on practice guidelines and the European society of cardiology committee for practice guidelines (writing committee to revise the 2001 guidelines for the management of patients with atrial fibrillation): developed in collaboration with the European heart rhythm association and the heart rhythm society. Circulation 114(7):e257–e354

    Article  Google Scholar 

  15. Gall NP, Murgatroyd FD (2007) Electrical cardioversion for AF-the state of the art. Pacing Clin Electrophysiol 30(4):554–567

    Article  Google Scholar 

  16. Grönefeld GC, Lilienthal J, Kuck KH, Hohnloser SH, in Atrial Fibrillation (PIAF) Study investigators, P.I (2003) Impact of rate versus rhythm control on quality of life in patients with persistent atrial fibrillation. Results from a prospective randomized study. Eur Heart J 24(15):1430–1436

    Google Scholar 

  17. Henry WL, Morganroth J, Pearlman AS, Clark CE, Redwood DR, Itscoitz SB, Epstein SE (1976) Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 53(2):273–279

    Google Scholar 

  18. Holmqvist F, Stridh M, Waktare JEP, Roijer A, Sörnmo L, Platonov PG, Meurling CJ (2006) Atrial fibrillation signal organization predicts sinus rhythm maintenance in patients undergoing cardioversion of atrial fibrillation. Europace 8(8):559–565

    Article  Google Scholar 

  19. Holmqvist F, Stridh M, Waktare JEP, Sörnmo L, Olsson SB, Meurling CJ (2006) Atrial fibrillatory rate and sinus rhythm maintenance in patients undergoing cardioversion of persistent atrial fibrillation. Eur Heart J 27(18):2201–2207

    Article  Google Scholar 

  20. Husser D, Stridh M, Cannom DS, Bhandari AK, Girsky MJ, Kang S, Sörnmo L, Olsson SB, Bollmann A (2007) Validation and clinical application of time–frequency analysis of atrial fibrillation electrocardiograms. J Cardiovasc Electrophysiol 18(1):41–46

    Article  Google Scholar 

  21. Kannel WB, Abbott RD, Savage DD, McNamara PM (1982) Epidemiologic features of chronic atrial fibrillation: the Framingham study. N Engl J Med 306(17):1018–1022

    Google Scholar 

  22. Lau CP, Lok NS (1997) A comparison of transvenous atrial defibrillation of acute and chronic atrial fibrillation and the effect of intravenous sotalol on human atrial defibrillation threshold. Pacing Clin Electrophysiol 20(10 Pt 1):2442–2452

    Article  Google Scholar 

  23. Lombardi F, Colombo A, Basilico B, Ravaglia R, Garbin M, Vergani D, Battezzati PM, Fiorentini C (2001) Heart rate variability and early recurrence of atrial fibrillation after electrical cardioversion. J Am Coll Cardiol 37(1):157–162

    Article  Google Scholar 

  24. Lundström T, Rydén L (1988) Chronic atrial fibrillation. Long-term results of direct current conversion. Acta Med Scand 223(1):53–59

    Google Scholar 

  25. Mallat S (1999) A wavelet tour of signal processing. Academic Press, Dublin

    MATH  Google Scholar 

  26. Meurling CJ, Roijer A, Waktare JEP, Holmqvist F, Lindholm CJ, Ingemansson MP, Carlson J, Stridh M, Sörnmo L, Olsson SB (2006) Prediction of sinus rhythm maintenance following DC-cardioversion of persistent atrial fibrillation—the role of atrial cycle length. BMC Cardiovasc Disord 6:11

    Article  Google Scholar 

  27. Nilsson F, Stridh M, Bollmann A, Sörnmo L (2006) Predicting spontaneous termination of atrial fibrillation using the surface ECG. Med Eng Phys 28(8):802–808

    Article  Google Scholar 

  28. Pálinkás A, Antonielli E, Picano E, Pizzuti A, Varga A, Nyúzó B, Alegret JM, Bonzano A, Tanga M, Coppolino A, Forster T, Baralis G, Delnevo F, Csanády M (2001) Clinical value of left atrial appendage flow velocity for predicting of cardioversion success in patients with non-valvular atrial fibrillation. Eur Heart J 22(23):2201–2208

    Article  Google Scholar 

  29. Pan J, Tompkins WJ (1985) A real-time QRS detection algorithm. IEEE Trans Biomed Eng 32(3):230–236

    Article  Google Scholar 

  30. Petrutiu S, Ng J, Nijm GM, Al-Angari H, Swiryn S, Sahakian AV (2006) Atrial fibrillation and waveform characterization. A time domain perspective in the surface ECG. IEEE Eng Med Biol Mag 25(6):24–30

    Article  Google Scholar 

  31. Pincus SM (1991) Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA 88(6):2297–2301

    Article  MathSciNet  MATH  Google Scholar 

  32. Pincus SM (2001) Assessing serial irregularity and its implications for health. Ann N Y Acad Sci 954:245–267

    Article  Google Scholar 

  33. Pincus SM, Keefe DL (1992) Quantification of hormone pulsatility via an approximate entropy algorithm. Am J Physiol 262(5 Pt 1):E741–E754

    Google Scholar 

  34. Richman JS, Moorman JR (2000) Physiological time–series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278(6):H2039–H2049

    Google Scholar 

  35. Shkurovich S, Sahakian AV, Swiryn S (1998) Detection of atrial activity from high-voltage leads of implantable ventricular defibrillators using a cancellation technique. IEEE Trans Biomed Eng 45(2):229–234

    Article  Google Scholar 

  36. Sih HJ, Zipes DP, Berbari EJ, Olgin JE (1999) A high-temporal resolution algorithm for quantifying organization during atrial fibrillation. IEEE Trans Biomed Eng 46(4):440–450

    Article  Google Scholar 

  37. Stridh M, Sörnmo L (2001) Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation. IEEE Trans Biomed Eng 48(1):105–111

    Article  Google Scholar 

  38. Tieleman RG, Gelder ICV, Crijns HJ, Kam PJD, Berg MPVD, Haaksma J, Woude HJVD, Allessie MA (1998) Early recurrences of atrial fibrillation after electrical cardioversion: a result of fibrillation-induced electrical remodeling of the atria? J Am Coll Cardiol 31(1):167–173

    Article  Google Scholar 

  39. Watson JN, Addison PS, Uchaipichat N, Shah AS, Grubb NR (2007) Wavelet transform analysis predicts outcome of DC cardioversion for atrial fibrillation patients. Comput Biol Med 37(4):517–523

    Article  Google Scholar 

  40. Zohar P, Kovacic M, Brezocnik M, Podbregar M (2005) Prediction of maintenance of sinus rhythm after electrical cardioversion of atrial fibrillation by non-deterministic modelling. Europace 7(5):500–507

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project TEC2007–64884 from the Spanish Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Alcaraz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcaraz, R., Rieta, J.J. A non-invasive method to predict electrical cardioversion outcome of persistent atrial fibrillation. Med Biol Eng Comput 46, 625–635 (2008). https://doi.org/10.1007/s11517-008-0348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0348-5

Keywords

Navigation