Constraining the general linear model for sensible hemodynamic response function waveforms | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Constraining the general linear model for sensible hemodynamic response function waveforms

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

We propose a method to do constrained parameter estimation and inference from neuroimaging data using general linear model (GLM). Constrained approach precludes unrealistic hemodynamic response function (HRF) estimates to appear at the outcome of the GLM analysis. The permissible ranges of waveform parameters were determined from the study of a repertoire of plausible waveforms. These parameter intervals played the role of prior distributions in the subsequent Bayesian analysis of the GLM, and Gibbs sampling was used to derive posterior distributions. The method was applied to artificial null data and near infrared spectroscopy (NIRS) data. The results show that constraining the GLM eliminates unrealistic HRF waveforms and decreases false activations, without affecting the inference for “realistic” activations, which satisfy the constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akin A, Bilensoy D, Emir UEE, Gülsoy M, Candansayar S, Bolay H (2006) Cerebrovascular dynamics in patients with migraine: near-infrared spectroscopy study. Neurosci Lett 400:86–91

    Article  Google Scholar 

  2. Akgül CB, Akin A, Sankur B (2006) Extraction of cognitive activity-related waveforms from functional near-infrared spectroscopy signals. Med Biol Eng Comput 44:945–958

    Article  Google Scholar 

  3. Buxton R, Wong E, Frank L (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864

    Article  Google Scholar 

  4. Buxton RB, Uludağ K, Dubowitz DJ, Lin TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233

    Article  Google Scholar 

  5. Cope M, Delpy DT (1998) A system for the long-term measurement of cerebral blood and tissue oxygenation in newborn infants by near infra-red transillumination. Med Biol Eng Comput 26:289–294

    Article  Google Scholar 

  6. Devroye L (1986) Non-uniform random variate generation. Springer, New York

    MATH  Google Scholar 

  7. De Zwart JA, Silva AC, Van Gelterenn P, Kellman P, Fukunaga M, Chu R, Koretsky AP, Frank JA, Duyn JH (2005) Temporal dynamics of the BOLD fMRI impulse response. Neuroimage 24:667–677

    Article  Google Scholar 

  8. Dunson DB, Neelon B (2003) Bayesian inference on order-constrained parameters in generalized linear models. Biometrics 59:286–295

    Article  MathSciNet  Google Scholar 

  9. Ehlis AC, Herrmann MJ, Wagener A, Fallgatter AJ (2005) Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials. Biol Psychol 69:315–332

    Article  Google Scholar 

  10. Fabbri F, Sassaroli A, Henry ME, Fantini S (2004) Optical measurements of absorption changes in two-layered diffusive media. Phys Med Biol 49:1183–1201

    Article  Google Scholar 

  11. Firbank M, Okada E, Delpy DT (1998) A theoretical study of the signal contribution of regions of the adult head to near-infrared spectroscopy studies of visual evoked responses. Neuroimage 8:69–78

    Article  Google Scholar 

  12. Friman O, Borga M, Lundberg P, Knutsson H (2003) Adaptive analysis of fMRI data. Neuroimage 19:837–845

    Article  Google Scholar 

  13. Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, Turner R (1998) Event-related fMRI:Characterizing differential responses. Neuroimage 7:30–40

    Article  Google Scholar 

  14. Friston KJ, Josephs O, Zarahn E, Holmes AP, Rouquette S, Poline JB (2000) To smooth or not to smooth? Bias and efficiency in fMRI time-series analysis. NeuroImage 12:196–208

    Article  Google Scholar 

  15. Gelfand AE, Smith AFM, Lee TM (1992) Analysis of constrained parameter and truncated data problems using sampling. J Am Stat Assoc 87:523–532

    Article  MathSciNet  Google Scholar 

  16. Gelman AB, Carlin JS, Stern HS, Rubin DB (1995) Bayesian data analysis. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  17. Handwerker DA, Ollringer JM, D’Esposito M (2004) Variation of BOLD hemodynamic responses across subjects and brain regions and their effect on statistical analyses. Neuroimage 21:1639–1651

    Article  Google Scholar 

  18. Huppert TJ, Hoge RD, Diamond SG, Franceschinini MA, Boas DA (2006) A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 29:368–382

    Article  Google Scholar 

  19. MacLeod C (1991) Half a century of research on the stroop effect: an integrative review. Psychol Bull 109:163–203

    Article  Google Scholar 

  20. Purdon PL, Weisskoff RM (1998) Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Human Brain Mapp 6:239–249

    Article  Google Scholar 

  21. Schroeter ML, Zysset S, Wahl M, von Cramon DY (2004) Prefrontal activation due to Stroop interference increases during development –an event-related fNIRS study. Neuroimage 23:1317–1325

    Article  Google Scholar 

  22. Smith AFM, Roberts GO (1993) Bayesian computation via the Gibbs sampler and related Markov Chain Monte Carlo methods. J R Stat Soc Ser B (Methodological) 55:3–23

    MATH  MathSciNet  Google Scholar 

  23. Smith AT, Singh KD, Balsters JH (2007) A comment on the severity of the effect of non-white noise in fMRI time-series. Neuroimage 36:282–288

    Article  Google Scholar 

  24. Steinbrink J, Villringer A, Kempf F, Haux D, Boden S, Obrig H (2006) Illuminating the BOLD signal: combined fMRI-fNIRS studies. Magn Reson Imaging 24:495–505

    Article  Google Scholar 

  25. Suzuki M, Miyai I, Ono T, Kubota K (2008) Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 39:600–607

    Article  Google Scholar 

  26. Villringer A, Chance B (1997) Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci 20:4435–4442

    Article  Google Scholar 

  27. Woolrich MW, Behrens TEJ, Smith SM (2004) Constrained linear basis sets for HRF modeling using Variational Bayes. Neuroimage 21:1748–1761

    Article  Google Scholar 

  28. Woolrich MW, Ripley BD, Brady M, Smith SM (2001) Temporal autocorrelation in univariate linear modeling of fMRI data. Neuroimage 14:1370–1386

    Article  Google Scholar 

  29. Worsley KJ, Taylor JE (2006) Detecting fMRI activation allowing for unknown latency of the hemodynamic response. Neuroimage 29:649–654

    Article  Google Scholar 

  30. Zysset S, Muller K, Lohmann G, von Cramon DY (2001) Color–word matching Stroop task: separating interference and response conflict. Neuroimage 13:29–36

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koray Çiftçi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çiftçi, K., Sankur, B., Kahya, Y.P. et al. Constraining the general linear model for sensible hemodynamic response function waveforms. Med Biol Eng Comput 46, 779–787 (2008). https://doi.org/10.1007/s11517-008-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0347-6

Keywords

Navigation