Abstract
Epilepsy is a neurological disorder caused by intense electrical activity in the brain. The electrical activity, which can be modelled through the superposition of several electrical dipoles, can be determined in a non-invasive way by analysing the electro-encephalogram. This source localization requires the solution of an inverse problem. Locally convergent optimization algorithms may be trapped in local solutions and when using global optimization techniques, the computational effort can become expensive. Fast recovery of the electrical sources becomes difficult that way. Therefore, there is a need to solve the inverse problem in an accurate and fast way. This paper performs the localization of multiple dipoles using a global–local hybrid algorithm. Global convergence is guaranteed by using space mapping techniques and independent component analysis in a computationally efficient way. The accuracy is locally obtained by using the Recursively Applied and Projected-MUltiple Signal Classification (RAP-MUSIC) algorithm. When using this hybrid algorithm, a four times faster solution is obtained.
Similar content being viewed by others
References
Bai X, He B (2006) Estimation of number of independent brain electric sources from the scalp EEGs. IEEE Trans Biomed Eng 53:1883–1892
Bandler J, Biernacki R, Chen S, Grobelny P, Hemmers H (1994) Space mapping technique for electromagnetic optimization. IEEE Trans Microw Theory Technol 42:2536–2544
Bandler J, Cheng Q, Dakroury S, Mohamed A, Bakr M, Madsen K, Søndergaard J (2004) Space mapping: the state of the art. IEEE Trans Microw Theory Technol 52:337–361
Barr R, Pilkington T, Boineau J, Spach M (1966) Determining surface potentials from current dipoles, with application to electrocardiography. IEEE Trans Biomed Eng 23:88–92
Barrett R, Berry M, Chan T, Demmel J, Donato J, Dongarra J, Eijkhout V, Pozo R, Romine C, der Vorst H (1994) Templates for the solution of linear systems. SIAM, Philadelphia
Crevecoeur G, Hallez H, Van Hese P, D’Asseler Y, Dupré L, Van de Walle R (2008) EEG source analysis using space mapping techniques. J Comput Appl Math 215:339–347
Crevecoeur G, Hallez H, Van Hese P, D’Asseler Y, Dupré L, Van de Walle R (2007) Influence of noise on EEG source analysis using space mapping techniques. Int J Appl Electromagn Mech 25:383–387
Cuffin B (1995) A method for localizing EEG sources in realistic head models. IEEE Trans Biomed Eng 42:68–71
de Munck J, Van Dijk B, Spekreijse H (1988) Mathematical dipoles are adequate to describe realistic generators of human brain activity. IEEE Trans Biomed Eng 35:960–965
Huang M, Aine C, Supek S, Best E, Ranken D, Flynn E (1998) Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroenceph Clin Neurophysiol 108:32–44
Jiang T, Luo A, Li X, Kruggel F (2003) A Comparative Study of global optimisation approaches to MEG source localization. Int J Comput Math 80:305–324
Kaytal B, Schimpf P (2004) Multiple current dipole estimation in a realistic head model using R-MUSIC. Proc IEEE EMBS 26:829–832
Khosla D,Singh M, Don M (1997) Spatio-temporal EEG source localization using simulated annealing. IEEE Trans Biomed Eng 44:1075–1091
Knösche T, Berends E, Jagers H, Peters M (1998) Determining the number of independent sources of the EEG: a simulation study on information criteria. Brain Topogr 11:111–124
Liu H, Schimpf P (2006) Efficient localization of synchronous EEG source activities using a modified RAP-MUSIC algorithm. IEEE Trans Biomed Eng 53:652–661
Mosher J, Leahy R (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Trans Signal Process 47:332–340
Mosher J, Lewis P, Leahy R (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39:541–557
Pascual-Marqui R, Michel C, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65
Roth B, Ko D, von Albertini Carletti I, Scaffidi D, Sato S (1997) Dipole localization in patients with epilepsy using the realistically shaped head model. Electroencephalogr Clin Neuroph 102:159–166
Rush S, Driscoll D (1969) EEG electrode sensitivity—an application of reciprocity. IEEE Trans Biomed Eng 16:15–22
Salu Y, Cohen L,Rose D, Sato S, Kufta C, Hallett M (1990) An improved method for localizing electric brain dipoles. IEEE Trans Biomed Eng 37:699–705
Thakor N, Tong B (2004) Advances in quantitative electroencephalogram analysis methods. Annu Rev Biomed Eng 6:453–495
Van Hoey G, De Clercq J, Vanrumste B, Van de Walle R, D’Havé M, Lemahieu I, Boon P (2000) EEG dipole source localization using artificial neural networks. Phys Med Biol 45:997–1011
Vanrumste B,Van Hoey G, Van de Walle R, D’Havé M, Lemahieu I, Boon P (2001) The validation of the finite difference method and reciprocity for solving the inverse problem in EEG dipole source analysis. Brain Topogr 14:83–92
Vigario R, Srel J, Jousmki V, Hmlinen M, Oja E (2000) Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng 47:589–593
Wax M, Kailath T (1985) Detection of signals by information theoretic criteria. IEEE Trans Acoust Speech Signal Process 33:387–392
Zhang Y, van Drongelen W, He B (2006) Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl Phys Lett 89:223903
Acknowledgments
The authors would like to thank the “Bijzonder Onderzoeksfonds” (B.O.F.) of the Ghent University.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Crevecoeur, G., Hallez, H., Van Hese, P. et al. A hybrid algorithm for solving the EEG inverse problem from spatio-temporal EEG data. Med Biol Eng Comput 46, 767–777 (2008). https://doi.org/10.1007/s11517-008-0341-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-008-0341-z