Coronary microcirculation in the beating heart | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Coronary microcirculation in the beating heart

  • Special Issue
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The phase opposition of velocity waveforms between coronary arteries (predominantly diastolic) and veins (systolic) is the most prominent characteristic of coronary hemodynamics. This unique arterial and venous flow patterns indicate the importance of intramyocardial capacitance vessels and variable resistance vessels during a cardiac cycle. It was shown that during diastole the intramyocardial capacitance vessels have two functional components, unstressed volume and ordinary capacitance. Unstressed volume is defined as the volume of blood in a vessel at zero transmural pressure. In vivo observation of systolic narrowing of arterioles in mid-wall and in subendocardium indicates the increase in resistance by cardiac contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anrep GV, Saalfeld EV (1933) The effect of the cardiac contraction upon the coronary flow. J Physiol 79:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anrep GV, Cruickshank EW, Downing AC, Subba RA (1927) The coronary circulation in relation to the cardiac cycle. Heart 14:111–133

    Google Scholar 

  3. Ashikawa K, Kanatsuka H, Suzuki T, Takishima T (1986) Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res 59:704–711

    Article  CAS  PubMed  Google Scholar 

  4. Austin RE Jr, Smedira NG, Squiers TM, Hoffman JI (1994) Influence of cardiac contraction and coronary vasomotor tone on regional myocardial blood flow. Am J Physiol 266:H2542–H2553

    PubMed  Google Scholar 

  5. Bassingthwaighte JB, Yipintsoi T, Harvey RB (1974) Microvasculature of the dog left ventricular myocardium. Microvasc Res 7:229–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carew TE, Covell JW (1976) Effect of intramyocardial pressure on the phasic flow in the intraventricular septal artery. Cardiovasc Res 10:56–64

    Article  CAS  PubMed  Google Scholar 

  7. Chilian WM (1991) Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res 69(3):561–570

    Article  CAS  PubMed  Google Scholar 

  8. Chilian WM, Marcus ML (1982) Phasic coronary blood flow velocity in intramural and epicardial coronary arteries. Circ Res 50:775–781

    Article  CAS  PubMed  Google Scholar 

  9. Chilian WM, Marcus ML (1984) Coronary venous outflow persists after cessation of coronary arterial inflow. Am J Physiol 247:H984–H990

    CAS  PubMed  Google Scholar 

  10. Chilian WM, Eastham CL, Marcus ML (1986) Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 251:H779–H788

    CAS  PubMed  Google Scholar 

  11. Chilian WM, Eastham CL, Layne SM, Marcus ML (1988) Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 31:17–38 (Review)

    Article  CAS  PubMed  Google Scholar 

  12. Eckstein RW, Moir RW, Driscol TE (1963) Phasic and mean blood flow in the canine septal artery and an estimate of systole resistance in deep myocardial vessels. Circ Res 12:203–219

    Article  Google Scholar 

  13. Flynn AE, Coggins DL, Goto M, Aldea GS, Austin RE, Doucette JW, Husseini W, Hoffman JI (1992) Does systolic subepicardial perfusion come from retrograde subendocardial flow? Am J Physiol 262:H1759–H1769

    CAS  PubMed  Google Scholar 

  14. Fokkema DS, VanTeeffelen JW, Dekker S, Vergroesen I, Reitsma JB, Spaan JA (2005) Diastolic time fraction as a determinant of subendocardial perfusion. Am J Physiol Heart Circ Physiol 288(5):H2450–H2456

    Article  CAS  PubMed  Google Scholar 

  15. Fung YC (1997) Biomechanics. Circulation, 2nd edn. Springer, New York

    Book  Google Scholar 

  16. Gregg DE, Green HD (1940) Registration and interpretation of normal phasic inflow into the left coronary artery by an improved differential manometric method. Am J Physiol 130:114–125

    Google Scholar 

  17. Gregg DE, Sabiston DC Jr (1957) Effect of cardiac contraction on coronary blood flow. Circulation 15:14–20

    Article  CAS  PubMed  Google Scholar 

  18. Heineman FW, Grayson J (1985) Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249:H1216–H1223

    CAS  PubMed  Google Scholar 

  19. Hiramatsu O, Goto M, Yada T, Kimura A, Chiba Y, Tachibana H, Ogasawara Y, Tsujioka K, Kajiya F (1998) In vivo observations of the intramural arterioles and venules in beating canine hearts. J Physiol 509:619–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoffman JI (1981) Why is myocardial ischaemia so commonly subendocardial?. Clin Sci (Lond) 61:657–662

    Article  CAS  Google Scholar 

  21. Judd RM, Levy BI (1991) Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res 68:217–225

    Article  CAS  PubMed  Google Scholar 

  22. Kajiya F, Hoki N, Tomonaga G, Nishihara H (1981) A Laser-Doppler-Velocimeter using an optical fiber and its application to local velocity measurement in the coronary artery. Experientia 37:1171–1173

    Article  CAS  PubMed  Google Scholar 

  23. Kajiya F, Tomonaga G, Tsujioka K, Ogasawara Y, Nishihara H (1985) Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method. J Biomech Eng 107(1):10–15

    Article  CAS  PubMed  Google Scholar 

  24. Kajiya F, Tsujioka K, Goto M, Wada Y, Tadaoka S, Nakai M, Hiramatsu O, Ogasawara T, Mito K, Hoki N, Tomonaga G (1985) Evaluation of phasic blood flow velocity in the great cardiac vein by a laser Doppler method. Heart Vessels 1:16–23

    Article  CAS  PubMed  Google Scholar 

  25. Kajiya F, Tsujioka K, Goto M, Wada Y, Chen XL, Nakai M, Tadaoka S, Hiramatsu O, Ogasawara Y, Mito K, Tomonaga G (1986) Functional characteristics of intramyocardial capacitance vessels during diastole in the dog. Circ Res 58:476–485

    Article  CAS  PubMed  Google Scholar 

  26. Kajiya F, Tsujioka K, Ogasawara Y, Hiramatsu O, Wada Y, Goto M, Yanaka M (1989) Analysis of the characteristics of the flow velocity waveforms in left atrial small arteries and veins in the dog. Circ Res 65:1172–1181

    Article  CAS  PubMed  Google Scholar 

  27. Kajiya F, Yada T, Kimura A, Hiramatsu O, Goto M, Ogasawara Y, Tsujioka K (1993) Endocardial coronary microcirculation of the beating heart. Adv Exp Med Biol 346:173–180

    Article  CAS  PubMed  Google Scholar 

  28. Kajiya F, Yada T, Matsumoto T, Goto M, Ogasawara Y (2000) Intramyocardial influences on blood flow distributions in the myocardial wall. Ann Biomed Eng 28:897–902 (Review)

    Article  CAS  PubMed  Google Scholar 

  29. Kajiya F, Hiramatsu O, Goto M, Ogasawara Y (2001) Mechanical characteristics of coronary circulation. J Mech Med Biol 1:67–77 (Review)

    Article  Google Scholar 

  30. Kajiya M, Hiramatsu O, Yada T, Toyota E, Kiyooka T, Mohori S, Shimizu J, Ogasawara Y, Kajiya F (2005) Physiomic approach to biomechanics of coronary microcircuration. J Mech Med Biol 5:1–9

    Article  Google Scholar 

  31. Kajiya M, Hirota M, Inai Y, Kiyooka T, Morimoto T, Iwasaki T, Endo K, Mohri S, Shimizu J, Yada T, Ogasawara Y, Naruse K, Ohe T, Kajiya F (2007) Impaired NO-mediated vasodilation with increased superoxide but robust EDHF function in right ventricular arterial microvessels of pulmonary hypertensive rats. Am J Physiol 292:H2737–H2744

    CAS  Google Scholar 

  32. Kassab GS, Fung YC (1994) Topology and dimensions of pig coronary capillary network. Am J Physiol 267:H319–H325

    CAS  PubMed  Google Scholar 

  33. Kiyooka T, Hiramatsu O, Shigeto F, Nakamoto H, Tachibana H, Yada T, Ogasawara Y, Kajiya M, Morimoto T, Morizane Y, Mohri S, Shimizu J, Ohe T, Kajiya F (2005) Direct observation of epicardial coronary capillary hemodynamics during reactive hyperemia and during adenosine administration by intravital video microscopy. Am J Physiol 288:H1437–H1443

    CAS  Google Scholar 

  34. Klassen GA, Barclay KD, Wong R, Paton B, Wong AY (1997) Red cell flux during the cardiac cycle in the rabbit myocardial microcirculation. Cardiovasc Res 34:504–514

    Article  CAS  PubMed  Google Scholar 

  35. Krams R, Sipkema P, Westerhof N (1989) Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 257:H1471–H1479

    CAS  PubMed  Google Scholar 

  36. Little SE, Link JM, Krohn KA, Bassingthwaighte JB (1986) Myocardial extraction and retention of 2-iododesmethylimipramine: a novel flow marker. Am J Physiol 250:H1060–H1070

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Marcus ML (1983) The coronary circulation in health and disease. McGraw-Hill, New York

    Google Scholar 

  38. Matsumoto T, Goto M, Tachibana H, Ogasawara Y, Tsujioka K, Kajiya F (1996) Microheterogeneity of myocardial blood flow in rabbit hearts during normoxic and hypoxic states. Am J Physiol 270:H435–H441

    CAS  PubMed  Google Scholar 

  39. Matsumoto T, Ebata J, Tachibana H, Goto M, Kajiya F (1999) Transmural microcirculatory blood flow distribution in right and left ventricular free walls of rabbits. Am J Physiol 277:H183–H191

    CAS  PubMed  Google Scholar 

  40. Merkus D, Vergroesen I, Hiramatsu O, Tachibana H, Nakamoto H, Toyota E, Goto M, Ogasawara Y, Spaan JA, Kajiya F (2001) Stenosis differentially affects subendocardial and subepicardial arterioles in vivo. Am J Physiol Heart Circ Physiol 280(4):H1674–H1682

    CAS  PubMed  Google Scholar 

  41. Mihailescu LS, Abel FL (1994) Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Physiol 266:H1233–H1241

    CAS  PubMed  Google Scholar 

  42. Mori H, Tanaka E, Hyodo K, Uddin Mohammed M, Sekka T, Ito K, Shinozaki Y, Tanaka A, Nakazawa H, Abe S, Handa S, Kubota M, Tanioka K, Umetani K, Ando M (1999) Synchrotron microangiography reveals configurational changes and to-and-fro flow in intramyocardial vessels. Am J Physiol 276:H429–H437

    CAS  PubMed  Google Scholar 

  43. Nellis SH, Liedtke AJ, Whitesell L (1981) Small coronary vessel pressure and diameter in an intact beating rabbit heart using fixed-position and free-motion techniques. Circ Res 49:342–353

    Article  CAS  PubMed  Google Scholar 

  44. Porter WT (1898) The influence of the heart-beat on the flow of blood through the walls of the heart. Am J Physiol 1:145–163

    Google Scholar 

  45. Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32:654–667

    Article  CAS  PubMed  Google Scholar 

  46. Spaan JA (1991) Coronary blood flow. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  47. Spaan JA, Breuls NP, Laiird JD (1981) Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 49:584–593

    Article  CAS  PubMed  Google Scholar 

  48. Spaan JA, ter Wee R, van Teeffelen JW, Streekstra G, Siebes M, Kolyva C, Vink H, Fokkema DS, VanBavel E (2005) Visualisation of intramural coronary vasculature by an imaging cryomicrotome suggests compartmentalisation of myocardial perfusion areas. Med Biol Eng Comput 43(4):431–435

    Article  CAS  PubMed  Google Scholar 

  49. Steinhausen M, Tillmanns H, Thederan H (1978) Microcirculation of the epimyocardial layer of the heart. I. A method for in vivo observation of the microcirculation of superficial ventricular myocardium of the heart and capillary flow pattern under normal and hypoxic conditions. Pflugers Arch 378:9–14

    Article  CAS  PubMed  Google Scholar 

  50. Tillmanns H, Ikeda S, Hansen H, Sarma JS, Fauvel JM, Bing RJ (1974) Microcirculation in the ventricle of the dog and turtle. Circ Res 34:561–569

    Article  CAS  PubMed  Google Scholar 

  51. Tomanek RJ, Searls JC, Lachenbruch PA (1982) Quantitative changes in the capillary bed during developing, peak, and stabilized cardiac hypertrophy in the spontaneously hypertensive rat. Circ Res 51:295–304

    Article  CAS  PubMed  Google Scholar 

  52. Toyota E, Fujimoto K, Ogasawara Y, Kajita T, Shigeto F, Matsumoto T, Goto M, Kajiya F (2002) Dynamic changes in three-dimensional architecture and vascular volume of transmural coronary microvasculature between diastolic- and systolic-arrested rat hearts. Circulation 105:621–626

    Article  PubMed  Google Scholar 

  53. Toyota E, Ogasawara Y, Hiramatsu O, Tachibana H, Kajiya F, Yamamori S, Chilian WM (2005) Dynamics of flow velocities in endocardial and epicardial coronary arterioles. Am J Physiol 288:H1598–H1603

    CAS  Google Scholar 

  54. Vis MA, Bovendeerd PH, Sipkema P, Westerhof N (1997) Effect of ventricular contraction, pressure, and wall stretch on vessels at different locations in the wall. Am J Physiol 272:H2963–H2975

    CAS  PubMed  Google Scholar 

  55. Watanabe N, Akasaka T, Yamaura Y, Akiyama M, Koyama Y, Kamiyama N, Neishi Y, Kaji S, Saito Y, Yoshida K (2001) Noninvasive detection of total occlusion of the left anterior descending coronary artery with transthoracic Doppler echocardiography. J Am Coll Cardiol 38:1328–1332

    Article  CAS  PubMed  Google Scholar 

  56. Westerhof N, Boer C, Lamberts RR, Sipkema P (2006) Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 86:1263–1308 (Review)

    Article  CAS  PubMed  Google Scholar 

  57. Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F (1993) In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 72:939–946

    Article  CAS  PubMed  Google Scholar 

  58. Zuurbier CJ, van Iterson M, Ince C (1999) Functional heterogeneity of oxygen supply-consumption ratio in the heart. Cardiovasc Res 44(3):488–97 (Review)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Drs. Matsumoto T, Toyota E, Tachibana H, Mochizuki S, Kataoka N, Nakamoto H, Goto M, Tsujioka K and for their collaboration in this study. Thanks are also given to Ms. Izushi for her help in the preparation of this manuscript, and to NH for his English correction. This study was partly supported by Grants-in-Aid for Science Research (17200033) from the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Kajiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajiya, F., Yada, T., Hiramatsu, O. et al. Coronary microcirculation in the beating heart. Med Biol Eng Comput 46, 411–419 (2008). https://doi.org/10.1007/s11517-008-0335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0335-x

Keywords

Navigation