Artifact removal and texture-based rendering for visualization of 3D fetal ultrasound images | Medical & Biological Engineering & Computing Skip to main content
Log in

Artifact removal and texture-based rendering for visualization of 3D fetal ultrasound images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Convenient and non-invasive ultrasonography has become an essential tool for diagnosing fetal abnormalities. However, the noisy and blurry nature of sonographic data poses a challenge. To improve object visualization, we first develop a modified diffusion filter that utilizes the local standard deviation and edge of local-average-difference to define an adaptive edge stopping function in diffusion filtering. The proposed method overcomes the drawbacks of traditional diffusion filters and shows good results in comparative experiments. Moreover, we propose a novel light absorbing function to remove large regions of interface artifacts. An advanced imaging mode, called texture-based rendering, is employed to provide more realistic rendering. Experimental results show that the proposed methods enhance final image quality in 3D fetal sonograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Beier T, Neely S (1992) Feature-based image metamorphosis. In Comput Graph Proc SIGGRAPH’92 26(2):35–42

    Article  Google Scholar 

  2. Bullitt E, Aylward SR (2002) Volume rendering of segmented image objects. IEEE Trans Med Imaging 21(8):998–1002

    Article  Google Scholar 

  3. Chang RF, Wu WJ, Tseng CC, et al (2003) 3-D Snake for US in margin evaluation for malignant breast tumor excision using mammotome. IEEE Trans Inf Technol Biomed 7(3):197–201

    Article  Google Scholar 

  4. Crawford DC, Bell DS, Bamber JC (1993) Compensation for the signal processing characteristics of ultrasound B-mode scanners in adaptive speckle reduction. Ultrasound Med Biol 19:469–485

    Article  Google Scholar 

  5. Czerwinski RN, Jones D, O’Brien W (1998) Line and boundary detection in speckle images. IEEE Trans Image Process 7(12):1700–1714

    Article  Google Scholar 

  6. Downey DB, Pretorius DH, Fenster A, Nelson TR (May 1999) Three-dimensional ultrasound, Lippincott Williams and Wilkins, Philadelphia

  7. Fattal R, Lischinski D (2001) Variational classification for visualization of 3D ultrasound data. Proc IEEE Vis 21–26:403–410

    Google Scholar 

  8. Gupta S, Chauhan RC, Saxena SC (2004) Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Med Biol Eng Comput 42:189–192

    Article  Google Scholar 

  9. Gupta S, Chauhan RC, Saxena SC (2005) Robust non-homomorphic approach for speckle reduction in medical ultrasound images. Med Biol Eng Comput 43:189–195

    Article  Google Scholar 

  10. Hauser H, Mroz L, Bischi GI, Groller ME (2001) Two-level volume rendering. IEEE Trans Vis Comput Graph 7(3):242–252

    Article  Google Scholar 

  11. Karaman M, Kutay MA, Bozdagi G (1995) An adaptive speckle suppression filter for medical ultrasonic imaging. IEEE Trans Med Imaging 14(2):283–292

    Article  Google Scholar 

  12. Lee JS (1980) Digital image enhancement and noise filtering by using local statistics. IEEE Tran Pattern Anal Mach Intell 1–2 (2): 165–168

    Article  Google Scholar 

  13. Levin A, Lischinski D, Weiss Y (2004) Colorization using optimization. In: Proc ACM SIGGRAPH Conference, pp 689–694

  14. Levoy M (1988) Display of surface from volume data. IEEE Comput Graph Appl 8(3):29–37

    Article  Google Scholar 

  15. Loizou CP, Pattichis CS, Christodoulou CI et al (2005) Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans Ultrason Ferroelectr Freq Control 52(10):1653–1669

    Article  Google Scholar 

  16. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph Proc SIGGRAPH’87 21(4): 63–169

    Google Scholar 

  17. Merz E.(2005) Current 3D/4D ultrasound technology in prenatal diagnosis. Eur Clin Obstet Gynecol 1(3):184–193

    Article  Google Scholar 

  18. Nelson TR, Elvins TT (1993) Visualization of 3D ultrasound data. IEEE Comput Graph Appl 13(6):50–57

    Article  Google Scholar 

  19. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Article  Google Scholar 

  20. Pratt WK (1977) Digital image processing. Wiley, New York

    Google Scholar 

  21. Sakas G, Walter S (1995) Extracting surfaces from fuzzy 3D-ultrasound data. In: Proceedings of SIGGRAPH ‘95, pp 465–414

  22. Sakas G, Schreyer LA, Grimm M, (1995) Preprocessing and volume rendering of 3D ultrasonic data. IEEE Trans Vis Comput Graph 15(4): 47–54

    Google Scholar 

  23. Shung KK, Smith MB, Tsui, Benjamin MW (1992) Principles of medical imaging. Academic, New York, pp 90–91

  24. Souza A, Udupa JK, Saha PK (2005) Volume rendering in the presence of partial volume effects. IEEE Trans Med Imaging 24(2):223–235

    Article  Google Scholar 

  25. Steen E, Olstad B (1994) Volume rendering of 3D medical ultrasound data using direct feature mapping. IEEE Trans Med Imaging 13(3):517–525

    Article  Google Scholar 

  26. Sun Q, Hossack JA, Tang J, Acton ST (2004) Speckle reducing anisotropic diffusion for 3D ultrasound images. Comput Med Imaging Graph 28:461–470

    Article  Google Scholar 

  27. Tauber C, Batatia H, Ayache A (2004) A robust speckle reducing anisotropic diffusion. ICIP ‘04 1:247–250

    Google Scholar 

  28. Tiede U, Höhne KH, Bomans M, Pommert A, Riemer M, Wiebecke G (1990) Investigation of medical 3D-rendering algorithms. IEEE Comput Graph Appl 10(2):41–53

    Article  Google Scholar 

  29. Varandas J, Baptista P, Santos J, Martins R, Dias J (2004) VOLUS: a visualization system for 3D ultrasound data. Ultrasonics 42:689–694

    Article  Google Scholar 

  30. Wang SR, Sun YN, Chang FM, Jiang CF (1999) 3D image display of fetal ultrasonic image by thin shell. Proc SPIE 3661:1478–1488

    Article  Google Scholar 

  31. Weng TL, Lee TY, Sun YN (1998) New rendering method: scan-line based semi-boundary algorithm. Proc SPIE 3335(20):20–27

    Article  Google Scholar 

  32. Wu M, Fraser RF, Chen CW (2004) A novel algorithm for computer-assisted measurement of cervical length from transvaginal ultrasound images. IEEE Trans Inf Technol Biomed 8(3):333–342

    Article  Google Scholar 

  33. Yatziv L, Sapiro G (2006) Fast image and video colorization using chrominance blending. IEEE Trans Image Process 15(5):1120–1129

    Article  Google Scholar 

  34. Yu Y, Acton ST (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process 11(11):1260–1270

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Council, Taiwan, under grant NSC 89-2213-E-006-065. The authors would like to offer their sincere thanks to Mrs. Y. Q. Zheng, Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, for providing the ultrasound image dataset and special medical expertise; and also thanks to Professor Pai-Chi Li, Department of Electrical Engineering, National Taiwan University, for providing the speckle-simulating program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Nien Sun.

Appendix

Appendix

The following is the derivation of the normal vector.

$$\overrightarrow{N}= \frac{1}{8} \cdot \left({\sum_{i = 1}^4 \overrightarrow{P_{s}N_{i}} \times\overrightarrow{P_{s}N_{{\rm mod}(i+1)}}} + {\sum_{i = 5}^8 \overrightarrow{P_{s}N_{i}} \times\overrightarrow{P_{s}N_{{\rm mod}(i+1)}}}\right) $$
(A1)

Substituting the coordinates of P s and N i into (A1) yields

$$ \begin{aligned}\mathop{N}\limits^{\rightharpoonup} &= \frac{1}{8} \cdot ((0, - 1,D_{1} - D_{s}) \times (- 1,0,D_{2} - D_{s}) + (- 1,0,D_{2} - D_{s}) \times (0,1,D_{3} - D_{s}) \\&\quad + (0,1,D_{3} - D_{s}) \times (1,0,D_{4} - D_{s}) + (1,0,D_{4} - D_{s}) \times (0, - 1,D_{1} - D_{s}) \\&\quad + (1, - 1,D_{5} - D_{s}) \times (- 1, - 1,D_{6} - D_{s}) + (- 1, - 1,D_{6} - D_{s}) \times (- 1,1,D_{7} - D_{s}) \\&\quad + (- 1,1,D_{7} - D_{s}) \times (1,1,D_{8} - D_{s}) + (1,1,D_{8} - D_{s}) \times (1, - 1,D_{5} - D_{s})) \\\end{aligned}. $$
(A2)

where × denotes the cross product operation. To simplify the equation, we define ∇ D i as D i D s so that

$$ \begin{aligned}\mathop{N}\limits^{\rightharpoonup}& = \frac{1}{8} \cdot ((0, - 1,\nabla D_{1}) \times (- 1,0,\nabla D_{2}) + (- 1,0,\nabla D_{2}) \times (0,1,\nabla D_{3}) \\&\quad + (0,1,\nabla D_{3}) \times (1,0,\nabla D_{4}) + (1,0,\nabla D_{4}) \times (0, - 1,\nabla D_{1}) \\&\quad + (1, - 1,\nabla D_{5}) \times (- 1, - 1,\nabla D_{6}) + (- 1, - 1,\nabla D_{6}) \times (- 1,1,\nabla D_{7}) \\&\quad + (- 1,1,\nabla D_{7}) \times (1,1,\nabla D_{8}) + (1,1,\nabla D_{8}) \times (1, - 1,\nabla D_{5})). \\\end{aligned} $$
(A3)

After expanding the cross product, (A3) becomes

$$ \begin{aligned}\mathop{N}\limits^{\rightharpoonup}& = \frac{1}{8} \cdot ((- \nabla D_{2}, - \nabla D_{1}, - 1) + (- \nabla D_{2}, \nabla D_{3}, - 1) + (\nabla D_{4}, \nabla D_{3}, - 1) + (\nabla D_{4}, - \nabla D_{1}, - 1) \\&\quad + (\nabla D_{5} - \nabla D_{6}, - \nabla D_{5} - \nabla D_{6}, - 2) + (- \nabla D_{6} - \nabla D_{7}, \nabla D_{7} - \nabla D_{6}, - 2) \\&\quad + (\nabla D_{8} - \nabla D_{7}, \nabla D_{7} + \nabla D_{8}, - 2) + (\nabla D_{5} + \nabla D_{8}, \nabla D_{8} - \nabla D_{5}, - 2)) \\\end{aligned} $$
(A4)
$$ \Rightarrow \mathop{N}\limits^{\rightharpoonup}= \frac{1}{8} \cdot {\left[ \begin{aligned}& 2 \cdot {\left({\nabla D_{4} - \nabla D_{2} + \nabla D_{5} - \nabla D_{7} + \nabla D_{8} - \nabla D_{6}} \right)} \\& 2 \cdot {\left({\nabla D_{3} - \nabla D_{1} + \nabla D_{7} - \nabla D_{5} + \nabla D_{8} - \nabla D_{6}} \right)} \\& - 12 \\\end{aligned} \right]} $$
(A5)
$$ \Rightarrow \mathop{N}\limits^{\rightharpoonup}= {\left[ \begin{aligned}& \frac{1}{4} \cdot {\left({\nabla D_{4} - \nabla D_{2} + \nabla D_{5} - \nabla D_{7} + \nabla D_{8} - \nabla D_{6}} \right)} \\& \frac{1}{4} \cdot {\left({\nabla D_{3} - \nabla D_{1} + \nabla D_{7} - \nabla D_{5} + \nabla D_{8} - \nabla D_{6}} \right)} \\& - \frac{3}{2} \\\end{aligned} \right]} $$
(A6)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SR., Sun, YN. & Chang, FM. Artifact removal and texture-based rendering for visualization of 3D fetal ultrasound images. Med Biol Eng Comput 46, 575–588 (2008). https://doi.org/10.1007/s11517-007-0286-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0286-7

Keywords

Navigation