Adaptive segmentation of cerebrovascular tree in time-of-flight magnetic resonance angiography | Medical & Biological Engineering & Computing Skip to main content
Log in

Adaptive segmentation of cerebrovascular tree in time-of-flight magnetic resonance angiography

  • Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Accurate segmentation of the human vasculature is an important prerequisite for a number of clinical procedures, such as diagnosis, image-guided neurosurgery and pre-surgical planning. In this paper, an improved statistical approach to extracting whole cerebrovascular tree in time-of-flight magnetic resonance angiography is proposed. Firstly, in order to get a more accurate segmentation result, a localized observation model is proposed instead of defining the observation model over the entire dataset. Secondly, for the binary segmentation, an improved Iterative Conditional Model (ICM) algorithm is presented to accelerate the segmentation process. The experimental results showed that the proposed algorithm can obtain more satisfactory segmentation results and save more processing time than conventional approaches, simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Ser B 36:192–236

    MATH  MathSciNet  Google Scholar 

  2. Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc B 48(3):259–302

    MATH  MathSciNet  Google Scholar 

  3. Chung ACS, Noble JA (1999) Statistical 3D vessel segmentation using a Rician distribution. MICCAI’99, pp 82–89

  4. Derin H, Elliott H (1987) Modeling and segmentation of noisy and textured images using Gibbs random fields. IEEE Trans Pattern Anal Machine Intell 9(1):39–55

    Google Scholar 

  5. Geman S, Geman D, (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  MATH  Google Scholar 

  6. Hassouna MS, Farag AA, Hushek A, Moriarty T (2006) Cerebrovascular segmentation from TOF using stochastic models. Med Image Anal 10:2–18

    Article  Google Scholar 

  7. Kirbas C,Quek F (2002) A review of vessel extraction techniques and algorithms. J ACM Comput Surv 36(6):81–121

    Google Scholar 

  8. Kirkpatrick S, Gelatt CD,Vecchi MP (1983) Optimization by simulated annealing. Science 220, 4598:671–680

    Article  MathSciNet  Google Scholar 

  9. Li SZ (1995) Markov random field modeling in computer vision, Springer, Tokyo

    Google Scholar 

  10. Li SZ (2000) Markov random field modeling in image analysis, 2nd edn. Springer, New York, pp 166–170

    Google Scholar 

  11. Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Westin CF (1999) Co-dimension 2 geodesic active contours for mra segmentation. Proc 16th Int Conf Inf Process Med Imaging 1613:126–133

    Google Scholar 

  12. Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Nabavi A, Westin CF (2001) CURVES: curve evolution for vessel segmentation. Med Image Anal 5:195–206

    Article  Google Scholar 

  13. Loizou CP, Pattichis CS, Pantziaris M, Tyllis T, Nicolaides A(2007) Snakes based segmentation of the common carotid artery intima media. Med Biol Eng Comput 45(1):35–49

    Article  Google Scholar 

  14. McInerney T, Terzopoulos D(1995) Medical image segmentation using topologically adaptable surfaces. Comput Vis Virtual Reality Robot Med, pp 92–101

  15. McLachlan J, Peel D (2000) Finite mixture models. Wiley, New York

    MATH  Google Scholar 

  16. Rossnick S, Laub G, Braeckle G, Bachus R, Kennedy D, Nelson A, Dzik S, Starewicz P (1986) Three dimensional display of blood vessels in MRI. In: Proceedings of the computers in cardiology, pp 193–196

  17. Salem SA, Salem NM, Nandi AK (2007) Segmentation of retinal blood vessels using a novel clustering algorithm (RACAL) with a partial supervision strategy. Med Biol Eng Comput 45(3):261–273

    Article  Google Scholar 

  18. Suri JS, Liu K, Reden L, Laxminarayan S (2002) A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans Inf Tech Biomed 6(4): 338–350

    Article  Google Scholar 

  19. Wilson DL, Noble JA(1999) An adaptive segmentation algorithm for time-of-flight MRA data. IEEE Trans Med Imaging 18(10):938–945

    Article  Google Scholar 

  20. Yan P, Kassim A (2006) Segmentation of volumetric MRA images by using capillary active contour. Med Image Anal 10(3):317–329

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by “Supported by the National Grand Fundamental Research 973 Program of China under Grant No. 2006CB303000” and “Natural Science Foundation of Shanghai (05ZR14081)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, J.T., Li, M.L. & Tang, F.L. Adaptive segmentation of cerebrovascular tree in time-of-flight magnetic resonance angiography. Med Bio Eng Comput 46, 75–83 (2008). https://doi.org/10.1007/s11517-007-0244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0244-4

Keywords

Navigation