Dynamic cerebral autoregulation assessment using chaotic analysis in diabetic autonomic neuropathy | Medical & Biological Engineering & Computing Skip to main content

Advertisement

Log in

Dynamic cerebral autoregulation assessment using chaotic analysis in diabetic autonomic neuropathy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cerebral autoregulation (CA) was assessed by chaotic analysis based on mean arterial blood pressure (MABP) and mean cerebral blood flow velocity (MCBFV) in 19 diabetics with autonomic neuropathy (AN) and 11 age-matched normal subjects. MABP in diabetics dropped significantly in response to tilting (91.6 ± 14.9 vs. 74.1 ± 13.4 mmHg, P < 0.05). Valsalva ratio of heart rate was reduced in diabetics compared to normal (1.1 ± 0.1 vs. 1.5 ± 0.2, P < 0.05). It indicated AN affects the vasomotor tone of peripheral vessels and baroreflex. Nonlinear results showed higher correlation dimension values of MABP and MCBFV in diabetics compared to normal, especially MABP (3.7 ± 2.3 vs. 2.0 ± 0.8, P < 0.05). It indicated CA is more complicated in diabetics. The lower Lyapunov exponent and the higher Kolmogorov entropy values in diabetics indicated less predictable behavior and higher chaotic degree. This study suggests impaired autoregulation would be more chaotic and less predictable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52

    Google Scholar 

  2. Babikian VL, Wechsler LR (1999) Transcranial doppler ultrasonography, 2nd edn. Butterworth-Heinemann, Boston, pp 13–31

    Google Scholar 

  3. Blaber AP, Bondar RL, Stein F, Dunphy PT, Moradshahi P, Kassam MS, Freeman R (1997) Transfer function analysis of cerebral autoregulation dynamics in autonomic failure patients. Stroke 28:1686–1692

    Google Scholar 

  4. Busija DW (1993) Cerebral autoregulation. The regulation of cerebral blood flow. Chemical Rubber Company, Boca Raton, pp 45–64

    Google Scholar 

  5. Carey BJ, Eames PJ, Blake MJ, Panerai RB, Potter JF (2000) Dynamic cerebral autoregulation is unaffected by aging. Stroke 31:2895–2900

    Google Scholar 

  6. Carvajal R, Vallverdu M, Baranowski R, Chojnowski L, Rydlewska-Sadowska W, Jane R, Caminal P (1996) Non-linear analysis of heart rate variability in patients with hypertrophic cardiomyopathy. Annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 1616–1617

  7. Carvajal R, Zebrowski JJ, Vallverdu M, Baranowski R, Chojnowska L, Poplawska W, Caminal P (2002) Dimensional analysis of HRV in hypertrophic cardiomyopathy patients. IEEE Eng Med Biol Mag 21:71–78

    Article  Google Scholar 

  8. Chiu CC, Yeh SJ, Lin RC (1996) Data acquisition and validation analysis for Finapres signals. J Med Biol Eng 15:47–58

    Article  Google Scholar 

  9. Chiu CC, Yeh SJ, Chen CH (2000) Self-organizing arterial pressure pulse classification using neural network: theoretical considerations and clinical applicability. Comput Biol Med 30:71–88

    Article  Google Scholar 

  10. Chiu CC, Yeh SJ (2001) Assessment of cerebral autoregulation using time-domain cross-correlation analysis. Comput Biol Med 30:471–480

    Article  Google Scholar 

  11. Chiu CC, Yeh SJ, Liau BY (2005) Assessment of cerebral autoregulation dynamics in diabetics using time-domain cross-correlation analysis. J Med Biol Eng 25(2):53–59

    Google Scholar 

  12. Croughwell N, Lyth M, Quill TJ, Newman M, Greeley WJ, Smith LR, Reves JG (1990) Diabetic patients have abnormal cerebral autoregulation during cardiopulmonary bypass. Circulation 82(5 suppl):407–412

    Google Scholar 

  13. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27:1829–1834

    Google Scholar 

  14. Diehl RR, Linden D, Lücke D, Berlit P (1998) Spontaneous blood pressure oscillations and cerebral autoregulation. Clin Auton Res 8:7–12

    Article  Google Scholar 

  15. Eames PJ, Blake MJ, Panerai RB, Potter JF (2003) Cerebral autoregulation indices are unimpaired by hypertension in middle aged and older people. Am J Hypertens 16:746–753

    Article  Google Scholar 

  16. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208

    Article  MATH  MathSciNet  Google Scholar 

  17. He TG, Zheng CX, Jiang DZ (1997) Detecting nonlinearity in multichannel epileptic EEG. IEEE Eng Med Biol Mag 3:1202–1204

    Google Scholar 

  18. Heistad DD, Kontos HA (1983) Cerebral circulation handbook of physiology 3. American Physiological Society, Bethesda, pp 137–82

    Google Scholar 

  19. Hilborn RC (2000) Chaos and nonlinear dynamics. 2nd edn. Oxford Press, New York

    MATH  Google Scholar 

  20. Jiang ZX, Chiu CC, Yeh SJ (2001) Using clustering analysis to the study of cerebral autoregulation. In: proceedings of the biomedical engineering society 2001 Annual Symposium, pp 639–641

  21. Jiang ZX (2002) The assessment of dynamic cerebral autoregulation in diabetes using linear analysis. Master thesis, Institute of Automatic Control Engineering, Feng Chia University

  22. Jiang JJ, Zhang Y (2002) Nonlinear dynamic analysis of speech from pathological subjects. Electron Lett 38(6):294–295

    Article  Google Scholar 

  23. Kagiyama S, Tsukashima A, Abe I, Fujishima S, Ohmori S, Onaka U, Ohya Y, Fujii K, Tsuchihashi T, Fujishima M (1999) Chaos and spectral analysis of heart rate variability during head-up tilting in essential hypertension. J Auton Nerv Syst 76:153–158

    Article  Google Scholar 

  24. Kermode JL, Davis NJ, Thompson WR (1989) Comparison of the Finapres blood pressure monitor with intra-arterial manometry during induction of anaesthesia. Anaesth Intensive Care 17(4):470–475

    Google Scholar 

  25. Kplan DK, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, Goldberger AL (1991) Aging and the complexity of cardiovascular dynamics. Biophys J 59(4):945–949

    Article  Google Scholar 

  26. Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238

    Google Scholar 

  27. Maeda H, Matsumoto M, Handa N, Hougaku H, Ogawa S, Itoh T, Tsukamoto Y, Kamada T (1993) Reactivity of cerebral blood flow to carbon dioxide in various types of ischemic cerebrovascular disease: evaluation by the transcranial Doppler method. Stroke 24:670–675

    Google Scholar 

  28. Mankovsky BN, Piolot R, Mankovsky OL, Ziegler D (2003) Impairment of cerebral autoregulation in diabetic patients with cardiovascular autonomic neuropathy and orthostatic hypotension. Diabet Med 20(2):119–126

    Article  Google Scholar 

  29. Mitsis GD, Mahalingam A, Zhang R, Levine BD, Marmarelis VZ (2003) Nonlinear analysis of dynamic cerebral autoregulation in humans under orthostatic stress. In: proceedings of the 25th annual intenational conference of the IEEE EMBS, pp 398–401

  30. Panerai RB, Kelsall AWR, Rennie JM, Evans DH (1996) Analysis of cerebral blood flow autoregulation in neonates. IEEE Trans Biomed Eng 43:779–788

    Article  Google Scholar 

  31. Panerai RB (1998) Assessment of cerebral pressure autoregulation in humans—a review of measurement methods. Physiol Meas 19:305–338

    Article  Google Scholar 

  32. Panerai RB, Dawson SL, Potter JF (1999) Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am J Physiol 277:H1089–H1099

    Google Scholar 

  33. Panerai RB, Simpson DM, Deverson ST, Mathony P, Hayes P, Evans DH (2000) Multivariate dynamic analysis of cerebral blood flow regulation in humans. IEEE Trans Biomed Eng 47:419–423

    Article  Google Scholar 

  34. Panerai RB, Eames PJ, Potter JF (2003) Variability of time-domain indices cerebral autoregulation. Physiol Meas 24:367–381

    Article  Google Scholar 

  35. Paulson OB, Strandgaard S, Edvinson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192

    Google Scholar 

  36. Steinmeier R, Bauhuf C, Subner UH, Bauer RD, Fahlbusch R, Laumer R, Bondar I (1996) Slow rhythmic oscillations of blood pressure, intracranial pressure, microcirculation and cerebral oxygenation. Stroke 27:2236–2243

    Google Scholar 

  37. Shen CL, Chiu CC, Yeh SJ (1998) The study of cerebral flow autoregulation based on the arterial blood pressure and cerebral blood flow velocity. In: proceedings of the biomedical engineering society, 1998 Annual Symposium, pp 293–294

  38. Shen Q, Stuart J, Venkatesh B, Wallace J, Lipman J (1999) Inter observer variability of the transcranial Doppler ultrasound technique: impact of lack of practice on the accuracy of measurement. J Clin Monit Comput 15:179–184

    Article  Google Scholar 

  39. Silke B, McAuley D (1998) Accuracy and precision of blood pressure determination with the Finapres: an overview using re-sampling statistics. J Hum Hypertens 12:403–409

    Article  Google Scholar 

  40. Silke B, Spiers JP, Boyd S, Graham E, McParland G, Scott ME (1994) Evaluation of non-invasive blood pressure measurement by the Finapres method at rest and during dynamic exercise in subjects with cardiovascular insufficiency. Clin Auton Res 4(1–2):49–56

    Article  Google Scholar 

  41. Sorteberg W, Langmoen IA, Lindegarrd KF, Nornes H (1990) Side-to-side differences and day-to-day variations of transcranial Doppler parameter in normal subjects. J Ultrasound Med 9:403–409

    Google Scholar 

  42. Tiecks FP, Lam AM, Aaslid DW, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26:1014–1019

    Google Scholar 

  43. Tranquillo J, Ning T (1997) Chaotic behavior of respiration signals. In: proceedings of the IEEE 23rd northeast bioengineering conference, pp 50–51

  44. Vriens EM, Kraaier V, Musbach M, Wieneke GH, van Huffelen AC (1989) Transcranial pulsed Doppler measurements of blood velocity in the middle cerebral artery: reference values at rest and during hyperventilation in healthy volunteers in relation to age and sex. Ultrasound Med Biol 15(1):1–8

    Article  Google Scholar 

  45. Wagner CD, Persson PB (1998) Chaos in blood pressure control. Cardiovasc Res 31:380–387

    Article  Google Scholar 

  46. Wagner CD, Persson PB (1998) Chaos in the cardiovascular system: an update. Cardiovasc Res 40:257–264

    Article  Google Scholar 

  47. Yam AT, Lang EW, Lagopoulos J, Yip K, Griffith J, Mudaliar Y, Dorsch NWC (2005) Cerebral autoregulation and ageing. J Clin Neurosci 12(6):643–646

    Article  Google Scholar 

  48. Zhang S, Reisman SS, Tapp WN, Zhang PZ (1993) Correlation dimension in heart rate variability. In: proceedings of the 1993 IEEE nineteenth annual northeast bioengineering conference, pp 11–12

  49. Zhang R, Zuckerman JH, Giller CA, Levine BD (1998) Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol 274:H233–241

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council, Taiwan, ROC., for supporting this research under Contract No. NSC94-2213-E-035-045.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoou-Jeng Yeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liau, BY., Yeh, SJ., Chiu, CC. et al. Dynamic cerebral autoregulation assessment using chaotic analysis in diabetic autonomic neuropathy. Med Bio Eng Comput 46, 1–9 (2008). https://doi.org/10.1007/s11517-007-0243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0243-5

Keywords

Navigation