Signal design for MIMO dual-function systems with permutation learning | Science China Information Sciences Skip to main content
Log in

Signal design for MIMO dual-function systems with permutation learning

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper addresses the signal matrix synthesis in the multi-input-multi-output (MIMO) dual-function system aimed at obtaining the desired radar beampattern while embedding communication symbols into the permutation matrix of each pulse. To this end, transmit beampattern peak mainlobe to sidelobe level ratio (PMSR) is considered the figure of merit. Besides, the phases of the codebook induced by the designed weight vectors impinged on the directions of the communication receivers and eavesdroppers are restricted to be uniformly distributed and totally the same, respectively. To handle the resulting design problem, an iterative algorithm is devised to account for the coupled quadratic fractional programming objective function with multi-equality constraints, capitalizing on the alternating direction method of multipliers (ADMM) framework. As to the demodulation process for permutation learning, a novel algorithm based on the alternating direction penalty method (ADPM) framework is proposed to handle the mix-boolean optimization problem with the correlation between the communication dictionary and permutation of the received filtered data maximized. Finally, numerical results highlight the effectiveness of the conceived algorithms in comparison with the existing counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Zheng L, Lops M, Eldar Y C, et al. Radar and communication coexistence: an overview: a review of recent methods. IEEE Signal Process Mag, 2019, 36: 85–99

    Article  Google Scholar 

  2. Aubry A, de Maio A, Govoni M A, et al. On the design of multi-spectrally constrained constant modulus radar signals. IEEE Trans Signal Process, 2020, 68: 2231–2243

    Article  MathSciNet  Google Scholar 

  3. Yang J, Aubry A, de Maio A, et al. Multi-spectrally constrained transceiver design against signal-dependent interference. IEEE Trans Signal Process, 2022, 70: 1320–1332

    Article  MathSciNet  Google Scholar 

  4. Aubry A, Carotenuto V, de Maio A, et al. Optimization theory-based radar waveform design for spectrally dense environments. IEEE Aerosp Electron Syst Mag, 2016, 31: 14–25

    Article  Google Scholar 

  5. Yu X, Qiu H, Yang J, et al. Multispectrally constrained MIMO radar beampattern design via sequential convex approximation. IEEE Trans Aerosp Electron Syst, 2022, 58: 2935–2949

    Article  Google Scholar 

  6. Hassanien A, Amin M G, Zhang Y D, et al. Signaling strategies for dual-function radar communications: an overview. IEEE Aerosp Electron Syst Mag, 2016, 31: 36–45

    Article  Google Scholar 

  7. Zhang D, Hu Y, Chen Y, et al. BreathTrack: tracking indoor human breath status via commodity WiFi. IEEE Int Things J, 2019, 6: 3899–3911

    Article  Google Scholar 

  8. Yu X, Yao X, Yang J, et al. Integrated waveform design for MIMO radar and communication via spatio-spectral modulation. IEEE Trans Signal Process, 2022, 70: 2293–2305

    Article  MathSciNet  Google Scholar 

  9. Zhu K H, Wang J, Liang X D, et al. Joint SAR imaging and wireless communication using the FBMC chirp waveform. Sci China Inf Sci, 2020, 63: 149302

    Article  Google Scholar 

  10. Bu Y, Qiu H, Fan T, et al. Constant modulus sequence set design with low weighted integrated sidelobe level in spectrally crowded environments. Sci China Inf Sci, 2022, 65: 159303

    Article  Google Scholar 

  11. Yu X, Alhujaili K, Cui G, et al. MIMO radar waveform design in the presence of multiple targets and practical constraints. IEEE Trans Signal Process, 2020, 68: 1974–1989

    Article  MathSciNet  Google Scholar 

  12. Cui G, de Maio A, Farina A, et al. Radar Waveform Design Based on Optimization Theory. London: SciTech Publishing, 2020

    Google Scholar 

  13. Yu X, Cui G, Yang J, et al. MIMO radar transmit-receive design for moving target detection in signal-dependent clutter. IEEE Trans Veh Technol, 2020, 69: 522–536

    Article  Google Scholar 

  14. Yao Y, Li X, Wu L. Cognitive frequency-hopping waveform design for dual-function MIMO radar-communications system. Sensors, 2020, 20: 415

    Article  Google Scholar 

  15. Liu Y, Liao G, Chen Y, et al. Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform. IEEE Trans Veh Technol, 2020, 69: 11659–11672

    Article  Google Scholar 

  16. Liu Y, Liao G, Yang Z, et al. Multiobjective optimal waveform design for OFDM integrated radar and communication systems. Signal Processing, 2017, 141: 331–342

    Article  Google Scholar 

  17. Hassanien A, Himed B, Rigling B D. A dual-function MIMO radar-communications system using frequency-hopping waveforms. In: Proceedings of IEEE Radar Conference, Seattle, 2017. 1721–1725

  18. Eedara I P, Amin M G, Hassanien A. Controlling clutter modulation in frequency hopping MIMO dual-function radar communication systems. In: Proceedings of IEEE International Radar Conference (RADAR), Washington, 2020. 466–471

  19. Eedara I P, Amin M G, Hoorfar A. Optimum code design using genetic algorithm in frequency hopping dual function MIMO radar communication systems. In: Proceedings of IEEE Radar Conference, Florence, 2020. 1–6

  20. Eedara I P, Amin M G, Fabrizio G A. Target detection in frequency hopping MIMO dual-function radar-communication systems. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, 2021. 8458–8462

  21. Wang X, Hassanien A. Phase modulated communications embedded in correlated FH-MIMO radar waveforms. In: Proceedings of IEEE Radar Conference, Florence, 2020. 1–6

  22. Wang X, Xu J, Hassanien A, et al. Joint communications with FH-MIMO radar systems: an extended signaling strategy. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, 2021. 8253–8257

  23. Sturm C, Wiesbeck W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proc IEEE, 2011, 99: 1236–1259

    Article  Google Scholar 

  24. Tian X, Song Z. On radar and communication integrated system using OFDM signal. In: Proceedings of IEEE Radar Conference, Seattle, 2017. 0318–0323

  25. Huang Y, Hu S, Ma S, et al. Constant envelope OFDM RadCom fusion system. J Wireless Com Network, 2018, 2018: 104

    Article  Google Scholar 

  26. Ji S, Chen H, Hu Q, et al. A dual-function radar-communication system using FDA. In: Proceedings of IEEE Radar Conference, Oklahoma City, 2018. 0224–0229

  27. Alselwi A, Khan A U, Qureshi I M, et al. Throughput enhancement for the joint radar-communication systems based on cognitive closed-loop design. IEEE Access, 2021, 9: 64785–64807

    Article  Google Scholar 

  28. Nusenu S Y, Wang W Q. Dual-function FDA MIMO radar-communications system employing costas signal waveforms. In: Proceedings of IEEE Radar Conference, Oklahoma City, 2018. 0033–0038

  29. Liu F, Masouros C, Li A, et al. MU-MIMO communications with MIMO radar: from co-existence to joint transmission. IEEE Trans Wireless Commun, 2018, 17: 2755–2770

    Article  Google Scholar 

  30. Liu F, Zhou L, Masouros C, et al. Toward dual-functional radar-communication systems: optimal waveform design. IEEE Trans Signal Process, 2018, 66: 4264–4279

    Article  MathSciNet  Google Scholar 

  31. Liu F, Masouros C, Ratnarajah T, et al. On range sidelobe reduction for dual-functional radar-communication waveforms. IEEE Wireless Commun Lett, 2020, 9: 1572–1576

    Article  Google Scholar 

  32. Tsinos C G, Arora A, Chatzinotas S, et al. Joint transmit waveform and receive filter design for dual-function radar-communication systems. IEEE J Sel Top Signal Process, 2021, 15: 1378–1392

    Article  Google Scholar 

  33. Liu R, Li M, Liu Q, et al. Dual-functional radar-communication waveform design: a symbol-level precoding approach. IEEE J Sel Top Signal Process, 2021, 15: 1316–1331

    Article  Google Scholar 

  34. Hassanien A, Amin M G, Aboutanios E, et al. Dual-function radar communication systems: a solution to the spectrum congestion problem. IEEE Signal Process Mag, 2019, 36: 115–126

    Article  Google Scholar 

  35. Hassanien A, Amin M G, Zhang Y D, et al. Dual-function radar-communications: information embedding using sidelobe control and waveform diversity. IEEE Trans Signal Process, 2016, 64: 2168–2181

    Article  MathSciNet  Google Scholar 

  36. Hassanien A, Amin M G, Zhang Y D, et al. Phase-modulation based dual-function radar-communications. IET Radar Sonar Navigation, 2016, 10: 1411–1421

    Article  Google Scholar 

  37. Ahmed A, Zhang Y D, Gu Y. Dual-function radar-communications using QAM-based sidelobe modulation. Digital Signal Process, 2018, 82: 166–174

    Article  Google Scholar 

  38. Hassanien A, Aboutanios E, Amin M G, et al. A dual-function MIMO radar-communication system via waveform permutation. Digital Signal Process, 2018, 83: 118–128

    Article  Google Scholar 

  39. Wang X, Hassanien A, Amin M G. Dual-function MIMO radar communications system design via sparse array optimization. IEEE Trans Aerosp Electron Syst, 2019, 55: 1213–1226

    Article  Google Scholar 

  40. Fan W, Liang J, Chen Z, et al. Spectrally compatible aperiodic sequence set design with low cross- and auto-correlation PSL. Signal Process, 2021, 183: 107960

    Article  Google Scholar 

  41. Wu W, Cao Y, Wang S, et al. MIMO waveform design combined with constellation mapping for the integrated system of radar and communication. Signal Process, 2020, 170: 107443

    Article  Google Scholar 

  42. Fan W, Liang J, Li J. Constant modulus MIMO radar waveform design with minimum peak sidelobe transmit beampattern. IEEE Trans Signal Process, 2018, 66: 4207–4222

    Article  MathSciNet  Google Scholar 

  43. Wen Z, Yang C, Liu X, et al. Alternating direction methods for classical and ptychographic phase retrieval. Inverse Problems, 2012, 28: 115010

    Article  MathSciNet  Google Scholar 

  44. Hassanien A, Vorobyov S A, Khabbazibasmenj A. Transmit radiation pattern invariance in MIMO radar with application to DOA estimation. IEEE Signal Process Lett, 2015, 22: 1609–1613

    Article  Google Scholar 

  45. Cheng Z, Han C, Liao B, et al. Communication-aware waveform design for MIMO radar with good transmit beampattern. IEEE Trans Signal Process, 2018, 66: 5549–5562

    Article  MathSciNet  Google Scholar 

  46. Wu L, Palomar D P. Sequence design for spectral shaping via minimization of regularized spectral level ratio. IEEE Trans Signal Process, 2019, 67: 4683–4695

    Article  MathSciNet  Google Scholar 

  47. Yu X, Cui G, Yang J, et al. Wideband MIMO radar waveform design. IEEE Trans Signal Process, 2019, 67: 3487–3501

    Article  MathSciNet  Google Scholar 

  48. Yu X, Cui G, Yang J, et al. Wideband MIMO radar beampattern shaping with space-frequency nulling. Signal Process, 2019, 160: 80–87

    Article  Google Scholar 

  49. Lan L, Liao G, Xu J, et al. Transceive beamforming with accurate nulling in FDA-MIMO radar for imaging. IEEE Trans Geosci Remote Sens, 2020, 58: 4145–4159

    Article  Google Scholar 

  50. Lan L, Liao G S, Xu J W, et al. Range-angle-dependent beamforming for FDA-MIMO radar using oblique projection. Sci China Inf Sci, 2022, 65: 152305

    Article  MathSciNet  Google Scholar 

  51. Liu F, Masouros C, Li A, et al. Robust MIMO beamforming for cellular and radar coexistence. IEEE Wireless Commun Lett, 2017, 6: 374–377

    Article  Google Scholar 

Download references

Acknowledgements

This work of Jing YANG, Xianxiang YU, and Guolong CUI was supported in part by National Natural Science Foundation of China (Grant Nos. U19B2017, 62101097, 61871080), Changjiang Scholar Program, 111 Project (Grant No. B17008), and China Postdoctoral Science Foundation (Grant Nos. 2020M680147, 2021T140096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolong Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yu, X., Sha, M. et al. Signal design for MIMO dual-function systems with permutation learning. Sci. China Inf. Sci. 66, 202303 (2023). https://doi.org/10.1007/s11432-022-3651-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3651-8

Keywords

Navigation