Energy-efficient computing-in-memory architecture for AI processor: device, circuit, architecture perspective | Science China Information Sciences Skip to main content
Log in

Energy-efficient computing-in-memory architecture for AI processor: device, circuit, architecture perspective

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

An artificial intelligence (AI) processor is a promising solution for energy-efficient data processing, including health monitoring and image/voice recognition. However, data movements between compute part and memory induce memory wall and power wall challenges to the conventional computing architecture. Recently, the memory-centric architecture has been revised to solve the data movement issue, where the memory is equipped with the compute-capable memory technique, namely, computing-in-memory (CIM). In this paper, we analyze the requirement of AI algorithms on the data movement and low power requirement of AI processors. In addition, we introduce the story of CIM and implementation methodologies of CIM architecture. Furthermore, we present several novel solutions beyond traditional analog-digital mixed static random-access memory (SRAM)-based CIM architecture. Finally, recent CIM tape-out studies are listed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liu L, Qu Z, Deng L, et al. Duet: boosting deep neural network efficiency on dual-module architecture. In: Proceedings of the 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020. 738–750

  2. Wess M, Manoj P D S, Jantsch A. Neural network based ECG anomaly detection on FPGA and trade-off analysis. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS), 2017. 1–4

  3. Zairi H, Talha M K, Meddah K, et al. FPGA-based system for artificial neural network arrhythmia classification. Neural Comput Appl, 2019, 32: 4105–4120

    Article  Google Scholar 

  4. Chen Y, Luo T, Liu S, et al. Dadiannao: a machine-learning supercomputer. In: Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, 2014. 609–622

  5. Du Z, Fasthuber R, Chen T, et al. Shidiannao: shifting vision processing closer to the sensor. In: Proceedings of ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA), 2015. 92–104

  6. Pham P, Jelaca D, Farabet C, et al. Neuflow: dataflow vision processing system-on-a-chip. In: Proceedings of IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), 2012. 1044–1047

  7. Chen Y, Krishna T, Emer J, et al. 14.5 eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2016. 262–263

  8. Jouppi N, Young C, Patil N, et al. In-datacenter performance analysis of a tensor processing unit. In: Proceedings of ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), 2017

  9. Li W, Xu P, Zhao Y, et al. Timely: pushing data movements and interfaces in PIM accelerators towards local and in time domain. In: Proceedings of ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), 2020. 832–845

  10. Chi P, Li S, Xu C, et al. Prime: a novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. In: Proceedings of ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016. 27–39

  11. Zhao Y, Chen X, Wang Y, et al. Smartexchange: trading higher-cost memory storage/access for lower-cost computation. In: Proceedings of ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), 2020. 954–967

  12. Gokhale M, Holmes B, Iobst K. Processing in memory: the Terasys massively parallel PIM array. Computer, 1995, 28: 23–31

    Article  Google Scholar 

  13. Patterson D, Anderson T, Cardwell N, et al. A case for intelligent RAM. IEEE Micro, 1997, 17: 34–44

    Article  Google Scholar 

  14. Hall M, Kogge P, Koller J, et al. Mapping irregular applications to diva, a PIM-based data-intensive architecture. In: Proceedings of the ACM/IEEE Conference on Supercomputing, 1999. 57

  15. Oskin M, Chong F T, Sherwood T. Active pages: a computation model for intelligent memory. In: Proceedings of the 25th Annual International Symposium on Computer Architecture, 1998. 192–203

  16. Kang Y, Huang W, Yoo S M, et al. FlexRAM: toward an advanced intelligent memory system. In: Proceedings of IEEE International Conference on Computer Design, 1999. 192–201

  17. Patterson D, Anderson T, Cardwell N, et al. Intelligent RAM (IRAM): chips that remember and compute. In: Proceedings of IEEE International Solids-State Circuits Conference, 1997. 224–225

  18. Li S, Xu C, Zou Q, et al. Pinatubo: a processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories. In: Proceedings of the 53rd ACM/EDAC/IEEE Design Automation Conference (DAC), 2016. 1–6

  19. Zhuo Y W, Wang C, Zhang M X, et al. Graphq: scalable PIM-based graph processing. In: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. New York: Association for Computing Machinery, 2019

    Google Scholar 

  20. Deng L, Wang G, Li G, et al. Tianjic: a unified and scalable chip bridging spike-based and continuous neural computation. IEEE J Solid-State Circ, 2020, 55: 2228–2246

    Article  Google Scholar 

  21. Li S, Niu D, Malladi K T, et al. Drisa: a DRAM-based reconfigurable in-situ accelerator. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017. 288–301

  22. Li S, Glova A O, Hu X, et al. Scope: a stochastic computing engine for DRAM-based in-situ accelerator. In: Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018. 696–709

  23. Ahn J, Hong S, Yoo S, et al. A scalable processing-in-memory accelerator for parallel graph processing. In: Proceedings of ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA), 2015. 105–117

  24. Chang L, Ma X, Wang Z, et al. CORN: in-buffer computing for binary neural network. In: Proceedings of Design, Automation Test in Europe Conference Exhibition (DATE), 2019. 384–389

  25. Chang L, Ma X, Wang Z, et al. PXNOR-BNN: in/with spin-orbit Torque MRAM preset-XNOR operation-based binary neural networks. IEEE Trans VLSI Syst, 2019, 27: 2668–2679

    Article  Google Scholar 

  26. Gao M, Ayers G, Kozyrakis C. Practical near-data processing for in-memory analytics frameworks. In: Proceedings of International Conference on Parallel Architecture and Compilation (PACT), 2015. 113–124

  27. Peng X, Liu R, Yu S. Optimizing weight mapping and data flow for convolutional neural networks on processing-in-memory architectures. IEEE Trans Circ Syst I, 2020, 67: 1333–1343

    Google Scholar 

  28. Chen Y, Emer J, Sze V. Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks. In: Proceedings of ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016. 367–379

  29. Fleischer B, Shukla S, Ziegler M, et al. A scalable multi-TeraOPS deep learning processor core for AI trainina and inference. In: Proceedings of IEEE Symposium on VLSI Circuits, 2018. 35–36

  30. Samal K, Wolf M, Mukhopadhyay S. Attention-based activation pruning to reduce data movement in real-time AI: a case-study on local motion planning in autonomous vehicles. IEEE J Emerg Sel Top Circ Syst, 2020, 10: 306–319

    Article  Google Scholar 

  31. Yin S, Ouyang P, Liu L, et al. A fast and power-efficient memory-centric architecture for affine computation. IEEE Trans Circ Syst II, 2016, 63: 668–672

    Google Scholar 

  32. JEDEC. High Bandwidth Memory (HBM) DRAM. JESD235A-2015. https://www.jedec.org/standards-documents/docs/jesd235a

  33. Consortium H M C. Hybrid memory cube specification 1.0. 2013. https://yumpu.b4your.com/en/pdf/3015151532/

  34. Koo G, Matam K K, Te I, et al. Summarizer: trading communication with computing near storage. In: Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017. 219–231

  35. Nair R, Antao S F, Bertolli C, et al. Active memory cube: a processing-in-memory architecture for exascale systems. IBM J Res Dev, 2015, 59: 1–14

    Article  Google Scholar 

  36. Farmahini-Farahani A, Ahn J H, Morrow K, et al. NDA: near-DRAM acceleration architecture leveraging commodity DRAM devices and standard memory modules. In: Proceedings of IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), 2015. 283–295

  37. Si X, Chen J, Tu Y, et al. A Twin-8T SRAM computation-in-memory unit-macro for multibit CNN-based AI edge processors. IEEE J Solid-State Circ, 2020, 55: 189–202

    Article  Google Scholar 

  38. Zhang M, Zhuo Y, Wang C, et al. Graphp: reducing communication for PIM-based graph processing with efficient data partition. In: Proceedings of IEEE International Symposium on High Performance Computer Architecture (HPCA), 2018. 544–557

  39. Dai G, Huang T, Chi Y, et al. GraphH: a processing-in-memory architecture for large-scale graph processing. IEEE Trans Comput-Aided Des Integr Circ Syst, 2019, 38: 640–653

    Article  Google Scholar 

  40. Zhang J, Wang Z, Verma N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE J Solid-State Circ, 2017, 52: 915–924

    Article  Google Scholar 

  41. Okumura S, Yabuuchi M, Hijioka K, et al. A ternary based bit scalable, 8.80 TOPS/W CNN accelerator with many-core processing-in-memory architecture with 896K synapses/mm2. In: Proceedings of Symposium on VLSI Technology, 2019

  42. Biswas A, Chandrakasan A P. CONV-RAM: an energy-efficient SRAM with embedded convolution computation for low-power CNN-based machine learning applications. In: Proceedings of IEEE International Solid-State Circuits Conference, 2018. 488–490

  43. Kang M, Gonugondla S K, Shanbhag N R. A 19.4 nJ/decision 364 K decisions/s in-memory random forest classifier in 6T SRAM array. In: Proceedings of the 43rd IEEE European Solid State Circuits Conference, 2017. 263–266

  44. Valavi H, Ramadge P J, Nestler E, et al. A mixed-signal binarized convolutional-neural-network accelerator integrating dense weight storage and multiplication for reduced data movement. In: Proceedings of IEEE Symposium on VLSI Circuits, 2018. 141–142

  45. Kang M, Gonugondla S K, Patil A, et al. A multi-functional in-memory inference processor using a standard 6T SRAM array. IEEE J Solid-State Circ, 2018, 53: 642–655

    Article  Google Scholar 

  46. Gonugondla S K, Kang M, Shanbhag N. A 42 PJ/decision 3.12 TOPS/W robust in-memory machine learning classifier with on-chip training. In: Proceedings of IEEE International Solid-State Circuits Conference, 2018. 490–492

  47. Ramanathan A K, Kalsi G S, Srinivasa S, et al. Look-up table based energy efficient processing in cache support for neural network acceleration. In: Proceedings of the 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2020. 88–101

  48. Eckert C, Wang X, Wang J, et al. Neural cache: bit-serial in-cache acceleration of deep neural networks. In: Proceedings of ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), 2018. 383–396

  49. Sayal A, Fathima S, Nibhanupudi S S T, et al. 14.4 all-digital time-domain CNN engine using bidirectional memory delay lines for energy-efficient edge computing. In: Proceedings of IEEE International Solid-State Circuits Conference, 2019. 228–230

  50. Sayal A, Nibhanupudi S S T, Fathima S, et al. A 12.08-TOPS/W all-digital time-domain CNN engine using bi-directional memory delay lines for energy efficient edge computing. IEEE J Solid-State Circ, 2020, 55: 60–75

    Article  Google Scholar 

  51. Everson L R, Liu M, Pande N, et al. A 104.8 TOPS/W one-shot time-based neuromorphic chip employing dynamic threshold error correction in 65 nm. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), 2018. 273–276

  52. Everson L R, Liu M, Pande N, et al. An energy-efficient one-shot time-based neural network accelerator employing dynamic threshold error correction in 65 nm. IEEE J Solid-State Circ, 2019, 54: 2777–2785

    Article  Google Scholar 

  53. Amravati A, Nasir S B, Thangadurai S, et al. A 55 nm time-domain mixed-signal neuromorphic accelerator with stochastic synapses and embedded reinforcement learning for autonomous micro-robots. In: Proceedings of IEEE International Solid-State Circuits Conference, 2018. 124–126

  54. Amaravati A, Nasir S B, Ting J, et al. A 55-nm, 1.0–0.4 V, 1.25-pJ/MAC time-domain mixed-signal neuromorphic accelerator with stochastic synapses for reinforcement learning in autonomous mobile robots. IEEE J Solid-State Circ, 2019, 54: 75–87

    Article  Google Scholar 

  55. Chen Z, Gu J. High-throughput dynamic time warping accelerator for time-series classification with pipelined mixed-signal time-domain computing. IEEE J Solid-State Circ, 2021, 56: 624–635

    Article  Google Scholar 

  56. Wan W, Kubendran R, Eryilmaz S B, et al. 33.1 a 74 TMACS/W CMOS-RRAM neurosynaptic core with dynamically reconfigurable dataflow and in-situ transposable weights for probabilistic graphical models. In: Proceedings of IEEE International Solid-State Circuits Conference, 2020. 498–500

  57. Khwa W, Chang M, Wu J, et al. 7.3 a resistance-drift compensation scheme to reduce MLC PCM raw BER by over 100×for storage-class memory applications. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2016. 134–135

  58. Wang Z, Zhou H, Wang M, et al. Proposal of toggle spin torques magnetic RAM for ultrafast computing. IEEE Electron Device Lett, 2019, 40: 726–729

    Article  Google Scholar 

  59. Chang L, Ma X, Wang Z, et al. DASM: data-streaming-based computing in nonvolatile memory architecture for embedded system. IEEE Trans VLSI Syst, 2019, 27: 2046–2059

    Article  Google Scholar 

  60. Chang T, Chiu Y, Lee C, et al. 13.4 a 22 nm 1 Mb 1024b-read and near-memory-computing dual-mode STT-MRAM macro with 42.6 GB/s read bandwidth for security-aware mobile devices. In: Proceedings of IEEE International Solid-State Circuits Conference, 2020. 224–226

  61. Zhang S, Huang K, Shen H. A robust 8-bit non-volatile computing-in-memory core for low-power parallel MAC operations. IEEE Trans Circ Syst I, 2020, 67: 1867–1880

    Google Scholar 

  62. Yu Z, Wang Z, Kang J, et al. Early-stage fluctuation in low-power analog resistive memory: impacts on neural network and mitigation approach. IEEE Electron Device Lett, 2020, 41: 940–943

    Article  Google Scholar 

  63. Yang J, Zhu J, Dang B, et al. TaOx synapse array based on ion profile engineering for high accuracy neuromorpic computing. In: Proceedings of China Semiconductor Technology International Conference (CSTIC), 2020. 1–4

  64. Wang Z, Kang J, Bai G, et al. Self-selective resistive device with hybrid switching mode for passive crossbar memory application. IEEE Electron Device Lett, 2020, 41: 1009–1012

    Article  Google Scholar 

  65. Chang L, Wang Z, Zhang Y, et al. Multi-port 1R1W transpose magnetic random access memory by hierarchical bit-line switching. IEEE Access, 2019, 7: 110463

    Article  Google Scholar 

  66. Khwa W, Chen J, Li J, et al. A 65 nm 4 kb algorithm-dependent computing-in-memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W fully parallel product-sum operation for binary DNN edge processors. In: Proceedings of IEEE International Solid-State Circuits Conference, 2018. 496–498

  67. Su J, Si X, Chou Y, et al. 15.2 a 28 nm 64 kb inference-training two-way transpose multibit 6T SRAM compute-in-memory macro for AI edge chips. In: Proceedings of IEEE International Solid-State Circuits Conference, 2020. 240–242

  68. Dong Q, Sinangil M E, Erbagci B, et al. 15.3 a 351 TOPS/W and 372.4GOPS compute-in-memory SRAM macro in 7 nm FinFet CMOS for machine-learning applications. In: Proceedings of IEEE International Solid-State Circuits Conference, 2020. 242–244

  69. Si X, Tu Y, Huang W, et al. 15.5 a 28 nm 64 kb 6T SRAM computing-in-memory macro with 8b MAC operation for AI edge chips. In: Proceedings of IEEE International Solid-State Circuits Conference, 2020. 246–248

  70. Yue J, Yuan Z, Feng X, et al. 14.3 a 65 nm computing-in-memory-based CNN processor with 2.9-to-35.8 TOPS/W system energy efficiency using dynamic-sparsity performance-scaling architecture and energy-efficient inter/intra-macro data reuse. In: Proceedings of IEEE International Solid-State Circuits Conference, 2020. 234–236

  71. Wang J, Wang X, Eckert C, et al. 14.2 a compute SRAM with bit-serial integer/floating-point operations for programmable in-memory vector acceleration. In: Proceedings of IEEE International Solid-State Circuits Conference, 2019. 224–226

  72. Gonugondla S K, Kang M, Shanbhag N. A 42 PJ/decision 3.12 TOPS/W robust in-memory machine learning classifier with on-chip training. In: Proceedings of IEEE International Solid-State Circuits Conference, 2018. 490–492

  73. Chiu Y C, Zhang Z, Chen J J, et al. A 4-kb 1-to-8-bit configurable 6T SRAM-based computation-in-memory unit-macro for CNN-based AI edge processors. IEEE J Solid-State Circ, 2020, 55: 2790–2801

    Article  Google Scholar 

  74. Wang J, Wang X, Eckert C, et al. A 28-nm compute SRAM with bit-serial logic/arithmetic operations for programmable in-memory vector computing. IEEE J Solid-State Circ, 2020, 55: 76–86

    Article  Google Scholar 

  75. Jia H, Valavi H, Tang Y, et al. A programmable heterogeneous microprocessor based on bit-scalable in-memory computing. IEEE J Solid-State Circ, 2020, 55: 2609–2621

    Article  Google Scholar 

  76. Jiang Z, Yin S, Seo J S, et al. C3SRAM: an in-memory-computing SRAM macro based on robust capacitive coupling computing mechanism. IEEE J Solid-State Circ, 2020, 55: 1888–1897

    Article  Google Scholar 

  77. Yin S, Jiang Z, Seo J, et al. XNOR-SRAM: in-memory computing SRAM macro for binary/ternary deep neural networks. IEEE J Solid-State Circ, 2020, 55: 1733–1743

    Article  Google Scholar 

  78. Biswas A, Chandrakasan A P. CONV-SRAM: an energy-efficient SRAM with in-memory dot-product computation for low-power convolutional neural networks. IEEE J Solid-State Circ, 2019, 54: 217–230

    Article  Google Scholar 

  79. Yang J, Kong Y, Wang Z, et al. 24.4 sandwich-RAM: an energy-efficient in-memory BWN architecture with pulse-width modulation. In: Proceedings of IEEE International Solid-State Circuits Conference, 2019. 394–396

  80. Chih Y D, Lee P H, Fujiwara H, et al. An 89 TOPS/W and 16.3 TOPS/mm2 all-digital SRAM-based full-precision compute-in memory macro in 22 nm for machine-learning edge applications. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), 2021. 252–254

  81. Chen W, Li K, Lin W, et al. A 65 nm 1 Mb nonvolatile computing-in-memory ReRAM macro with sub-16 ns multiply-and-accumulate for binary DNN AI edge processors. In: Proceedings of IEEE International Solid-State Circuits Conference, 2018. 494–496

  82. Xue C, Chen W, Liu J, et al. 24.1 a 1 Mb multibit ReRAM computing-in-memory macro with 14.6 ns parallel MAC computing time for CNN based AI edge processors. In: Proceedings of IEEE International Solid- State Circuits Conference, 2019. 388–390

  83. Yan B, Yang Q, Chen W, et al. RRAM-based spiking nonvolatile computing-in-memory processing engine with precision-configurable in situ nonlinear activation. In: Proceedings of Symposium on VLSI Technology, 2019. 86–87

  84. Su F, Chen W, Xia L, et al. A 462 GOPS/J RRAM-based nonvolatile intelligent processor for energy harvesting IOE system featuring nonvolatile logics and processing-in-memory. In: Proceedings of Symposium on VLSI Technology, 2017. 260–261

  85. Liu Q, Gao B, Yao P, et al. 33.2 a fully integrated analog ReRAM based 78.4 TOPS/W compute-in-memory chip with fully parallel MAC computing. In: Proceedings of IEEE International Solid- State Circuits Conference, 2020. 500–502

  86. Xue C, Chen W, Liu J, et al. Embedded 1-Mb ReRAM-based computing-in- memory macro with multibit input and weight for CNN-based AI edge processors. IEEE J Solid-State Circ, 2020, 55: 203–215

    Article  Google Scholar 

  87. Zha Y, Nowak E, Li J. Liquid silicon: a nonvolatile fully programmable processing-in-memory processor with monolithically integrated ReRAM. IEEE J Solid-State Circ, 2020, 55: 908–919

    Article  Google Scholar 

  88. Wan W, Kubendran R, Gao B, et al. A voltage-mode sensing scheme with differential-row weight mapping for energy-efficient RRAM-based in-memory computing. In: Proceedings of IEEE Symposium on VLSI Technology, 2020. 1–2

  89. Sebastian A, Tuma T, Papandreou N, et al. Temporal correlation detection using computational phase-change memory. Nature Commun, 2017, 8: 1–10

    Article  Google Scholar 

  90. Joshi V, Gallo M L, Haefeli S, et al. Accurate deep neural network inference using computational phase-change memory. Nature Commun, 2020, 11: 1–13

    Article  Google Scholar 

  91. Lee K R, Kim J, Kim C, et al. A 1.02-UW STT-MRAM-based DNN ECG arrhythmia monitoring SOC with leakage-based delay MAC unit. IEEE Solid-State Circ Lett, 2020, 3: 390–393

    Article  Google Scholar 

  92. Jeloka S, Akesh N B, Sylvester D, et al. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory. IEEE J Solid-State Circ, 2016, 51: 1009–1021

    Article  Google Scholar 

  93. Ando K, Ueyoshi K, Orimo K, et al. Brein memory: a 13-layer 4.2 k neuron/0.8 m synapse binary/ternary reconfigurable in-memory deep neural network accelerator in 65 nm CMOS. In: Proceedings of Symposium on VLSI Circuits, 2017. 24–25

  94. Slesazeck S, Ravsher T, Havel V, et al. A 2TnC ferroelectric memory gain cell suitable for compute-in-memory and neuromorphic application. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019. 1–4

  95. Yu C, Yoo T, Kim H, et al. A logic-compatible eDRAM compute-in-memory with embedded ADCs for processing neural networks. IEEE Trans Circ Syst I, 2021, 68: 667–679

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2019YFB2204500) and UESTC Research Start-up Funding (Grant No. Y030202059018052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, L., Li, C., Zhang, Z. et al. Energy-efficient computing-in-memory architecture for AI processor: device, circuit, architecture perspective. Sci. China Inf. Sci. 64, 160403 (2021). https://doi.org/10.1007/s11432-021-3234-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3234-0

Keywords

Navigation