Stabilization analysis for Markov jump systems with multiplicative noise and indefinite weight costs | Science China Information Sciences Skip to main content
Log in

Stabilization analysis for Markov jump systems with multiplicative noise and indefinite weight costs

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper mainly discusses the stabilization problem for discrete-time Markov jump linear systems (MJLSs) involving multiplicative noise with an infinite horizon. The cost weighting matrices are generalized to be indefinite. To the best of our knowledge, this paper is novel and unlike most previous studies, it provides the necessary and sufficient conditions that stabilize the MJLSs in the mean square sense with indefinite weighting matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costa O L V, Fragoso M D, Marques R P. Discrete Time Markov Jump Linear Systems. Berlin: Springer, 2005

    Book  Google Scholar 

  2. Zhang L X, Boukas E K. H control for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Int J Robust Nonlinear Control, 2009, 19: 868–883

    Article  MathSciNet  Google Scholar 

  3. Shi P, Boukas E K, Agarwal R K. Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay. IEEE Trans Autom Control, 1999, 44: 2139–2144

    Article  MathSciNet  Google Scholar 

  4. Wu L G, Shi P, Gao H J. State estimation and sliding-mode control of Markovian jump singular systems. IEEE Trans Autom Control, 2010, 55: 1213–1219

    Article  MathSciNet  Google Scholar 

  5. Costa O L V, Assumpção Filho E O, Boukas E K, et al. Constrained quadratic state feedback control of discrete-time Markovian jump linear systems. Automatica, 1999, 35: 617–626

    Article  MathSciNet  Google Scholar 

  6. Costa O L V. Linear minimum mean square error estimation for discrete-time Markovian jump linear systems. IEEE Trans Autom Control, 1994, 39: 1685–1689

    Article  MathSciNet  Google Scholar 

  7. Costa O L V, do Val J B R. Full information H-control for discrete-time infinite Markov jump parameter systems. J Math Anal Appl, 1996, 202: 578–603

    Article  MathSciNet  Google Scholar 

  8. Chen S, Li X, Zhou X Y. Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J Control Optim, 1998, 36: 1685–1702

    Article  MathSciNet  Google Scholar 

  9. Li X, Zhou X Y, Rami M A. Indefinite stochastic linear quadratic control with Markovian jumps in infinite time horizon. J Global Optim, 2003, 27: 149–175

    Article  MathSciNet  Google Scholar 

  10. Ma S, Boukas E K. Guaranteed cost control of uncertain discrete-time singular Markov jump systems with indefinite quadratic cost. Int J Robust Nonlinear Control, 2011, 21: 1031–1045

    Article  MathSciNet  Google Scholar 

  11. Costa O L V, de Paulo W L. Indefinite quadratic with linear costs optimal control of Markov jump with multiplicative noise systems. Automatica, 2007, 43: 587–597

    Article  MathSciNet  Google Scholar 

  12. Costa O L V, de Paulo W L. Generalized coupled algebraic riccati equations for discrete-time Markov jump with multiplicative noise systems. Eur J Control, 2008, 14: 391–408

    Article  MathSciNet  Google Scholar 

  13. Zhao J T, Chen Z Q, Liu Z X. A novel matrix approach for the stability and stabilization analysis of colored Petri nets. Sci China Inf Sci, 2019, 62: 192202

    Article  MathSciNet  Google Scholar 

  14. Rami M A, Chen X, Moore J B, et al. Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls. IEEE Trans Autom Control, 2001, 46: 428–440

    Article  MathSciNet  Google Scholar 

  15. Ju P J, Zhang H S. Achievable delay margin using LTI control for plants with unstable complex poles. Sci China Inf Sci, 2018, 61: 092203

    Article  MathSciNet  Google Scholar 

  16. Rami M A, Zhou X Y. Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls. IEEE Trans Autom Control, 2000, 45: 1131–1143

    Article  MathSciNet  Google Scholar 

  17. Costa O L V, Fragoso M D. Stability results for discrete-time linear systems with Markovian jumping parameters. J Math Anal Appl, 1993, 179: 154–178

    Article  MathSciNet  Google Scholar 

  18. Zhang H S, Xu J J. Optimal control with irregular performance. Sci China Inf Sci, 2019, 62: 192203

    Article  MathSciNet  Google Scholar 

  19. Li H D, Han C Y, Zhang H S, et al. Optimal control and stabilization for networked systems with input delay and Markovian packet losses. IEEE Trans Syst Man Cybern Syst, 2019. doi: https://doi.org/10.1109/tsmc.2019.2938792

  20. Zhang H S, Li L, Xu J J, et al. Linear quadratic regulation and stabilization of discrete-time systems with delay and multiplicative noise. IEEE Trans Autom Control, 2015, 60: 2599–2613

    Article  MathSciNet  Google Scholar 

  21. Zhang H S, Xu J J. Control for Itô stochastic systems with input delay. IEEE Trans Autom Control, 2017, 62: 350–365

    Article  Google Scholar 

  22. Zhang H S, Qi Q Y, Fu M Y. Optimal stabilization control for discrete-time mean-field stochastic systems. IEEE Trans Autom Control, 2019, 64: 1125–1136

    Article  MathSciNet  Google Scholar 

  23. Rami M A, Chen X, Zhou X Y. Discrete-time indefinite LQ control with state and control dependent noises. J Glob Optim, 2002, 23: 245–265

    Article  MathSciNet  Google Scholar 

  24. Albert A. Conditions for positive and nonnegative definiteness in terms of pseudo-inverse. SIAM J Control Optim, 1969, 17: 434–440

    MATH  Google Scholar 

  25. Li H D, Han C Y, Zhang H S. Optimal control problem for discrete-time Markov jump systems with indefinite weight costs. In: Proceedings of the 11th International Conference on Intelligent Robotics and Applications, Newcastle, 2018. 144–152

  26. Zhang W H, Chen B S. On stabilizability and exact observability of stochastic systems with their applications. Automatica, 2004, 40: 87–94

    Article  MathSciNet  Google Scholar 

  27. Zhang H S, Wang H X, Li L. Adapted and casual maximum principle and analytical solution to optimal control for stochastic multiplicative-noise systems with multiple input-delays. In: Proceedings of the 51st IEEE Conference on Decision and Control, Hawaii, 2012. 2122–2127

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61633014, U1701264), Foundation for Innovative Research Groups of National Natural Science Foundation of China (Grant No. 61821004), and Postdoctoral Science Foundation of China (Grant No. 2017M622231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanshui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Han, C. & Zhang, H. Stabilization analysis for Markov jump systems with multiplicative noise and indefinite weight costs. Sci. China Inf. Sci. 64, 152203 (2021). https://doi.org/10.1007/s11432-019-2842-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2842-8

Keywords

Navigation