Abstract
This paper presents an interactive graphics processing unit (GPU)-based relighting system in which local lighting condition, surface materials and viewing direction can all be changed on the fly. To support these changes, we simulate the lighting transportation process at run time, which is normally impractical for interactive use due to its huge computational burden. We greatly alleviate this burden by a hierarchical structure named a transportation tree that clusters similar emitting samples together within a perceptually acceptable error bound. Furthermore, by exploiting the coherence in time as well as in space, we incrementally adjust the clusters rather than computing them from scratch in each frame. With a pre-computed visibility map, we are able to efficiently estimate the indirect illumination in parallel on graphics hardware, by simply summing up the radiance shoots from cluster representatives, plus a small number of operations of merging and splitting on clusters. With relighting based on the time-varying clusters, interactive update of global illumination effects with multi-bounced indirect lighting is demonstrated in applications to material animation and scene decoration.
Similar content being viewed by others
References
Sloan P P, Kautz J, Snyder J. Pre-computed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans Graph, 2002, 21(3): 527–536
Kristensen A W, Moller T A, Jensen H W. Precomputed local radiance transfer for real-time lighting design. ACM Trans Graph, 2005, 24(3): 1208–1215
Kontkanen J, Turquin E, Holzschuch N, et al. Wavelet radiance transport for interactive indirect lighting. In: Tomas A-M, Wolfgang H, eds. Rendering Techniques. Massachusetts: A K Peters Ltd, 2006. 161–171
Sun X, Zhou K, Chen Y, et al. Interactive relighting with dynamic BRDFs. ACM Trans Graph, 2007, 26(3): 27
Akerlund O, Unger M, Wang R. Precomputed visibility cuts for interactive relighting with dynamic BRDFs. In: Alexa M, Gortler S J, Ju T, eds. Proceeding of Pacific Conference on Computer Graphics and Applications. Washington: IEEE Computer Society, 2007. 161–170
Kajiya J T. The rendering equation. J Comput Graph, 1986, 20(4): 143–150
Hanrahan P S, Salzman D B. A rapid hierarchical radiosity algorithm. J Comput Graph, 1991, 25(4): 197–206
Walter B, Fernandez S, Arbree A, et al. Lightcuts: Ascalable approach to illumination. ACM Trans Graph, 2005, 24(3): 1098–1107
Goral C, Torrance K, Greenberg D, et al. Modeling the interaction of light between diffuse surfaces. ACM SIGGRAPH Comput Graph, 1984, 18(3): 213–222
Cohen M F, Chen S E, Wallace J R, et al. A progressive refinement approach to fast radiosity image generation. ACM SIGGRAPH Comput Graph, 1988, 22(4): 75–84
Chen S E. Incremental radiosity: An extension of progressive radiosity to an interactive image synthesis system. ACM SIGGRAPH Comput Graph, 1990, 24(4): 135–144
Ward G, Rubinstein F, Clear R. A ray tracing solution for diffuse interreflection. ACM SIGGRAPH Comput Graph, 1988, 22(3): 85–92
Ben-Artzi A, Overbeck R, Ramamoorthi R. Real-time BRDF editing in complex lighting. ACM Trans Graph, 2006, 25(3): 945–954
Jensen H W. Global illumination using photon maps. In: Pueyo X, Schröder P, eds. Rendering Techniques’96. New York: Springer, 1996. 21–30
Huang P J, Wang W C, Yang G, et al. Traversal fields for ray tracing dynamic scenes. In: Slater M, Tal A, et al., eds. Proceedings of the ACM Symposium on VRST. New York: ACM Press, 2006. 65–74
Huang P J, Wang W C, Yang G, et al. Accelerating ray-tracing using proxy polygons (in Chinese). Chin J Comput, 2006, 30(2): 262–271
Ng R, Ramamoorthi R, Hanrahan P. All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans Graph, 2003, 22(3): 376–381
Liu X, Sloan P, Shum H -Y, et al. All-frequency precomputed radiance transfer for glossy objects. In: Alexander K, Jensen H W, eds. Proceeding of the Eurographics Symposium on Rendering 2004. Aire-la-Ville: Eurographics Association, 2004. 337–344
Wang R, Tran J, Luebke D. All-Frequency relighting of non-diffuse objects using separable BRDF approximation. In: Jensen H W, ed. Proceeding of the Eurographics Symposium on Rendering 2004. Aire-la-Ville: Eurographics Association, 2004. 345–354
Annen T, Kautz J, Durand F, et al. Spherical harmonic gradients for mid-range illumination. In: Alexander K, Jensen H W, eds. Proceeding of the Eurographics Symposium on Rendering 2004. Aire-la-Ville: Eurographics Association, 2004. 331–336
Sloan P P, Luna B, Snyder J. Local, deformable precomputed radiance transfer. ACM Trans Graph, 2005, 24(3): 1216–1224
Szecsi L, Kalos L S, Sbert M. Light animation with precomputed light paths on the GPU. In: Gutwin C, Mann S, eds. Proceedings of Graphics Interface 2006. Toronto: Canadian Information Processing Society Toronto, 2006. 187–194
Christensen P H, Lischinski D, Stollnitz E J, et al. Clustering for glossy global illumination. ACM Trans Graph, 1997, 16(1): 3–33
Castro F, Sbert M, Neumann L. Fast multipath radiosity using hierarchical subscenes. Comput Graph Forum, 2004, 23(1): 43–53
Loscos C, Drettakis G, Robert L. Interactive virtual relighting of real scenes. IEEE Trans Visual Comput Graph, 2000, 6(3): 289–305
Bekaert P, Neumann L, Neumann A, et al. Hierarchical Monte Carlo Radiosity. In: Drettakis G, Max N L, eds. Rendering Techniques 1998. Austria: Springer, 1998. 259–268
Carré S, Deniel J M, Guillou E, et al. Handling dynamic changes in hierarchical radiosity through interaction meshes. In: Barsky B A, Shinagawa Y, Wang W, et al., eds. The Eighth Pacific Conference on Computer Graphics and Applications. Washington: IEEE Computer Society, 2000. 40–51
Smits B, Arvo J, Greenberg D. A clustering algorithm for radiosity in complex environments. In: Schweitzer D, Glassner A, Keeler M, eds. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1994. 435–442
Drettakis G, Sillion F. Interactive update of global illumination using a line-space hierarchy. In: Owen G S, Whitted T, Mones-Hattal B, eds. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1997. 57–64
Brian E S, James R, Arvo R, et al. An importance driven radiosity algorithm. ACM SIGGRAPH Comput Graph, 1992, 26(2): 273–282
Sillion F, Drettakis G, Soler C. A clustering algorithm for radiance calculation in general environments. In: Hanrahan P, Purgathofer W, eds. Rendering Techniques ′95, New York: Springer-Verlag, 1995. 196–205
Schröder P, Gortler S J, Cohen M, et al. Wavelet radiosity. In: Whitton M C, ed. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1993. 221–230
Christensen P H, Stollnitz E J, DeRose T D, et al. Wavelet radiance. In: Sakas G, Shirley P, Muiller S, eds. Photorealistic Rendering Techniques. Berlin: Springer-Verlag, 1995. 295–309
Damez C, Holzschuch N, Sillion F. Space-time hierarchical radiosity with clustering and higher-order wavelets. Comput Graph Forum, 2001, 23(2): 35–42
Sbert M, Szécsi L, Szirmay-Kalos L. Real-time light animations. Computer Graphics Forum, 2004, 23(3): 291–299
Overbeck R, Ben-Artzi A, Ramamoorthi R, et al. Exploiting temporal coherence for incremental all-frequency relighting. In: Akenine-Möller T, Heidrich W, eds. Eurographics Symposium on Rendering 2006. Aire-la-Ville: Eurographics Association, 2006. 151–160
Jensen H W. Realistic Image Synthesis Using Photon Mapping. Massachusetts: AK Peters Ltd., 2003. 1–600
Ahuja R K, Magnanti T L, Orlin J B. Network flows theory algorithms and applications. United States Ed edition. New Jersey: Prentice Hall, 1993. 1–700
Segovia B, Iehl J C, Mitanchey Rand, et al. Bidirectional instant radiosity. In: Akenine-Möller T, Heidrich W, eds. Eurographics Symposium on Rendering 2006. Aire-la-Ville: Eurographics Association, 2006. 151–160
Blackwell H R. Luminance difference thresholds. Handbook of Sensory Physiology, vol. VII/4: Visual Psychophysics. New York: Springer-Verlag, 1972. 78–101
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Basic Research Program of China (Grant No. 2009CB320802), the National Natural Science Foundation of China (Grant No. 60833007), the National High-Tech Research & Development Progran of China (Grant No. 2008AA01Z301), and the Research Grant of the University of Macau
Rights and permissions
About this article
Cite this article
Huang, P., Gu, Y., Wu, X. et al. Time-varying clustering for local lighting and material design. Sci. China Ser. F-Inf. Sci. 52, 445–456 (2009). https://doi.org/10.1007/s11432-009-0059-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-009-0059-z